1,704 research outputs found

    The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies.

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations

    Living bacteria rheology: population growth, aggregation patterns and cooperative behaviour under different shear flows

    Full text link
    The activity of growing living bacteria was investigated using real-time and in situ rheology -- in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus -- strain COL and its isogenic cell wall autolysis mutant -- were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the two strains follow different and rich behaviours, with no counterpart in the optical density or in the population's colony forming units measurements. While the viscosity of strain COL keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain decreases steeply, still in the exponential phase, remains constant for some time and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviours, which were observed to be shear stress dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL, obtained with oscillatory shear, exhibit power-law behaviours whose exponent are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant have complex behaviours, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. These behaviours reflect nevertheless the bacteria growth stage.Comment: 9 pages, 10 figure

    Calibrating [O II] star formation rates at z < 1 from dual Hα-[O II] imaging from HiZELS

    Get PDF
    We investigate the relationship between Hα and [O II](λ3727) emission in faint star-forming galaxies at z = 1.47 with dust uncorrected star formation rates (SFRs) down to 1.4 M⊙ yr-1, using data in two narrow bands from wide-field camera/United Kingdom Infrared Telescope and Subaru prime focus camera/Subaru. A stacking analysis allows us to investigate Hα emission flux from bright [O II] emitters as well as faint ones for which Hα is not individually detected, and to compare them with a large sample of local galaxies. We find that there is a clear, positive correlation between the average Hα and [O II] luminosities for [O II] emitters at z = 1.47, with its slope being consistent with the local relation. [O II] emitters at z = 1.47 have lower mean observed ratios of Hα/[O II] suggesting a small but systematic offset (at 2.8σ significance) towards lower values of dust attenuation, AHα ˜ 0.35, than local galaxies. This confirms that [O II] selection tends to pick up galaxies which are significantly less dusty on average than Hα-selected ones, with the difference being higher at z = 1.47 than at z = 0. The discrepancy of the observed line ratios between [O II] emitters at z = 1.47 and the local galaxies may in part be due to the samples having different metallicities. However, we demonstrate that metallicity is unlikely to be the main cause. Therefore, it is important to take into account that the relations for the dust correction which are derived using Hα emitter samples, and frequently used in many studies of high-z galaxies, may overestimate the intrinsic SFRs of [O II]-selected galaxies, and that surveys of [O II] emission galaxies are likely to miss dusty populations

    On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ˜ 2.

    Get PDF
    This paper discusses the evolution of the correlation between galaxy star formation rates (SFRs) and stellar mass (M*) over the last ∼10 Gyr, particularly focusing on its environmental dependence. We first present the mid-infrared (MIR) properties of the Hα-selected galaxies in a rich cluster Cl 0939+4713 at z = 0.4. We use wide-field Spitzer/MIPS 24 μm data to show that the optically red Hα emitters, which are most prevalent in group-scale environments, tend to have higher SFRs and higher dust extinction than the majority population of blue Hα sources. With an MIR stacking analysis, we find that the median SFR of Hα emitters is higher in higher density environment at z = 0.4. We also find that star-forming galaxies in high-density environment tend to have higher specific SFR (SSFR), although the trend is much less significant compared to that of SFR. This increase of SSFR in high-density environment is not visible when we consider the SFR derived from Hα alone, suggesting that the dust attenuation in galaxies depends on environment; galaxies in high-density environment tend to be dustier (by up to ∼0.5 mag), probably reflecting a higher fraction of nucleated, dusty starbursts in higher density environments at z = 0.4. We then discuss the environmental dependence of the SFR–M* relation for star-forming galaxies since z ∼ 2, by compiling our comparable, narrow-band-selected, large Hα emitter samples in both distant cluster environments and field environments. We find that the SSFR of Hα-selected galaxies (at the fixed mass of log (M*/M⊙) = 10) rapidly evolves as (1 + z)3, but the SFR–M* relation is independent of the environment since z ∼ 2, as far as we rely on the Hα-based SFRs (with M*-dependent extinction correction). Even if we consider the possible environmental variation in the dust attenuation, we conclude that the difference in the SFR–M* relation between cluster and field star-forming galaxies is always small (≲0.2 dex level) at any time in the history of the Universe since z ∼ 2

    The stellar mass function of star-forming galaxies and the mass-dependent SFR function since z = 2.23 from HiZELS

    Get PDF
    We explore a large uniformly selected sample of Hα selected star-forming galaxies (SFGs) at z = 0.40, 0.84, 1.47, 2.23 to unveil the evolution of the star formation rate (SFR) function and the stellar mass function. We find strong evolution in the SFR function, with the typical SFR of SFGs declining exponentially in the last 11 Gyr as SFR*(T[Gyr]) = 104.23/T + 0.37 M⊙ yr−1, but with no evolution in the faint-end slope, α ≈ −1.6. The stellar mass function of SFGs, however, reveals little evolution: α ≈ −1.4, M* ∼ 1011.2 ± 0.2 M⊙ and just a slight increase of ∼2.3× in Φ* from z = 2.23 to z = 0.4. The stellar mass density within SFGs has been roughly constant since z = 2.23 at ∼107.65 ± 0.08 M⊙ Mpc−3, comprising ≈100 per cent of the stellar mass density in all galaxies at z = 2.23, and declining to ≈20 per cent by z = 0.40, driven by the rise of the passive population. We find that SFGs with ∼1010.0 ± 0.2 M⊙ contribute most to the SFR density (ρSFR) per d log10M, and that there is no significant evolution in the fractional contribution from SFGs of different masses to ρSFR or ρSFR(d log10M)−1 since z = 2.23. Instead, we show that the decline of SFR* and of ρSFR is primarily driven by an exponential decline in SFRs at all masses. Our results have important implications not only on how SFGs need to be quenched across cosmic time, but also on the driver(s) of the exponential decline in SFR* from ∼66 M⊙ yr−1 to 5 M⊙ yr−1 since z ∼ 2.23
    corecore