109 research outputs found

    Studies of opinion stability for small dynamic networks with opportunistic agents

    Full text link
    There are numerous examples of societies with extremely stable mix of contrasting opinions. We argue that this stability is a result of an interplay between society network topology adjustment and opinion changing processes. To support this position we present a computer model of opinion formation based on some novel assumptions, designed to bring the model closer to social reality. In our model, the agents, in addition to changing their opinions due to influence of the rest of society and external propaganda, have the ability to modify their social network, forming links with agents sharing the same opinions and cutting the links with those they disagree with. To improve the model further we divide the agents into `fanatics' and `opportunists', depending on how easy is to change their opinions. The simulations show significant differences compared to traditional models, where network links are static. In particular, for the dynamical model where inter-agent links are adjustable, the final network structure and opinion distribution is shown to resemble real world observations, such as social structures and persistence of minority groups even when most of the society is against them and the propaganda is strong.Comment: Revised version accepted by International Journal of Modern Physics C Added analysis, references and a new figur

    Band structure of semimagnetic Hg1-yMnyTe quantum wells

    Full text link
    The band structure of semimagnetic Hg_1-yMn_yTe/Hg_1-xCd_xTe type-III quantum wells has been calculated using eight-band kp model in an envelope function approach. Details of the band structure calculations are given for the Mn free case (y=0). A mean field approach is used to take the influence of the sp-d exchange interaction on the band structure of QW's with low Mn concentrations into account. The calculated Landau level fan diagram and the density of states of a Hg_0.98Mn_0.02Te/Hg_0.3Cd_0.7Te QW are in good agreement with recent experimental transport observations. The model can be used to interpret the mutual influence of the two-dimensional confinement and the sp-d exchange interaction on the transport properties of Hg_1-yMn_yTe/Hg_1-xCd_xTe QW's.Comment: 12 pages, 4 figure

    Interband mixing between two-dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor

    Full text link
    Theoretical calculations in the framework of Kane model have been carried out in order to elucidate the role of interband mixing in forming the energy spectrum of two-dimensional carriers, localized in a surface quantum well in narrow gap semiconductor. Of interest was the mixing between the 2D states and heavy hole states in the volume of semiconductor. It has been shown that the interband mixing results in two effects: the broadening of 2D energy levels and their shift, which are mostly pronounced for semiconductors with high doping level. The interband mixing has been found to influence mostly the effective mass of 2D carriers for large their concentration, whereas it slightly changes the subband distribution in a wide concentration range.Comment: 12 pages (RevTEX) and 4 PostScript-figure

    Collective emotions online and their influence on community life

    Get PDF
    E-communities, social groups interacting online, have recently become an object of interdisciplinary research. As with face-to-face meetings, Internet exchanges may not only include factual information but also emotional information - how participants feel about the subject discussed or other group members. Emotions are known to be important in affecting interaction partners in offline communication in many ways. Could emotions in Internet exchanges affect others and systematically influence quantitative and qualitative aspects of the trajectory of e-communities? The development of automatic sentiment analysis has made large scale emotion detection and analysis possible using text messages collected from the web. It is not clear if emotions in e-communities primarily derive from individual group members' personalities or if they result from intra-group interactions, and whether they influence group activities. We show the collective character of affective phenomena on a large scale as observed in 4 million posts downloaded from Blogs, Digg and BBC forums. To test whether the emotions of a community member may influence the emotions of others, posts were grouped into clusters of messages with similar emotional valences. The frequency of long clusters was much higher than it would be if emotions occurred at random. Distributions for cluster lengths can be explained by preferential processes because conditional probabilities for consecutive messages grow as a power law with cluster length. For BBC forum threads, average discussion lengths were higher for larger values of absolute average emotional valence in the first ten comments and the average amount of emotion in messages fell during discussions. Our results prove that collective emotional states can be created and modulated via Internet communication and that emotional expressiveness is the fuel that sustains some e-communities.Comment: 23 pages including Supporting Information, accepted to PLoS ON

    Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening

    Full text link
    The results of tunnelling studies of the energy spectrum of two-dimensional (2D) states in a surface quantum well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum of the 2D states over a wide energy range is obtained from the analysis of tunnelling conductivity oscillations in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in resonance with the heavy hole valence band, are investigated in structures with different strength of the surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the energy spectrum. The theoretical results are in good agreement with the tunnelling spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on request from [email protected]

    Incomplete echocardiographic recovery at 6\ua0months predicts long-term sequelae after intermediate-risk pulmonary embolism. A post-hoc analysis of the Pulmonary Embolism Thrombolysis (PEITHO) trial

    Get PDF
    Introduction: Symptoms and functional limitation are frequently reported by survivors of acute pulmonary embolism (PE). However, current guidelines provide no specific recommendations on which patients should be followed after acute PE, when follow-up should be performed, and which tests it should include. Definition and classification of late PE sequelae are evolving, and their predictors remain to be determined. Methods: In a post hoc analysis of the Pulmonary Embolism Thrombolysis (PEITHO) trial, we focused on 219 survivors of acute intermediate-risk PE with clinical and echocardiographic follow-up 6 months after randomisation as well as over the long term (median, 3 years after acute PE). The primary outcome was a composite of (1) confirmed chronic thromboembolic pulmonary hypertension (CTEPH) or (2) \u2018post-PE impairment\u2019 (PPEI), defined by echocardiographic findings indicating an intermediate or high probability of pulmonary hypertension along with New York Heart Association functional class II\u2013IV. Results: Confirmed CTEPH or PPEI occurred in 29 (13.2%) patients, (6 with CTEPH and 23 with PPEI). A history of chronic heart failure at baseline and incomplete or absent recovery of echocardiographic parameters at 6 months predicted CTEPH or PPEI at long-term follow-up. Conclusions: CTEPH or PPEI occurs in almost one out of seven patients after acute intermediate-risk PE. Six-month echocardiographic follow-up may be useful for timely detection of late sequelae

    Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Get PDF
    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well

    Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system

    Get PDF
    Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity

    A multi-disciplinary perspective on emergent and future innovations in peer review [version 2; referees: 2 approved]

    Get PDF
    Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments

    Structure and Function of the Hair Cell Ribbon Synapse

    Get PDF
    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years
    corecore