207 research outputs found

    Convergent evolution of prehistoric technologies: the entropy and diversity of limited solutions

    Get PDF
    Linking the likelihood of convergent evolution to the technologies’ complexity, this paper identifies the scales of technological diffusion and convergence, i.e., the evolving of structures that are similar, but not related to a common “ancestor.” Our study provides quantitative measures for understanding complexity and connectivity in technologies. The utility of our approach is exemplified through the case study of Cucuteni-Tripolye pottery kilns in Chalcolithic Southeastern Europe. The analysis shows that technological evolution has to be scaled to the “technologically important” (in quantitative terms) component parts, whose introduction shapes a ground for extinction and self-evolvement caused by the cascade effects along technological design structure. Similar technological solutions to the technological design structure engender the spread of similar devices in various locations. Surprisingly, such a broad distribution may be the result of relatively low internal diversity, rather than arising from higher efficiency. This gives some reasons for the underestimation of convergence as a mechanism for evolution of technology in current prehistoric archaeology

    Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory

    Full text link
    We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under cw-excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose-Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose-Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure

    Improved calibration of the human mitochondrial clock using ancient genomes

    Get PDF
    Reliable estimates of the rate at which DNA accumulates mutations (the substitution rate) are crucial for our understanding of the evolution and past demography of virtually any species. In humans, there are considerable uncertainties around these rates, with substantial variation among recent published estimates. Substitution rates have traditionally been estimated by associating dated events to the root (e.g. the divergence between humans and chimpanzees) or to internal nodes in a phylogenetic tree (e.g. first entry into the Americas). The recent availability of ancient mtDNA sequences allows for a more direct calibration by assigning the age of the sequenced samples to the tips within the human phylogenetic tree. But studies also vary greatly in the methodology employed and in the sequence panels analysed, making it difficult to tease apart the causes for the differences between previous estimates. To clarify this issue, we compiled a comprehensive dataset of 350 ancient and modern human complete mtDNA genomes, among which 146 were generated for the purpose of this study, and estimated substitution rates using calibrations based both on dated nodes and tips. Our results demonstrate that, for the same dataset, estimates based on individual dated tips are far more consistent with each other than those based on nodes and should thus be considered as more reliable

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    The small binary asteroid (939) Isberga

    Get PDF
    In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.140.06+0.09^{+0.09}_{-0.06} (all uncertainties are reported as 3-σ\sigma range) we determine (average albedo of S-types is 0.197 ±\pm 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 ±\pm 0.0001 h, is close to circular, and has pole coordinates within 7 deg. of (225, +86) in ECJ2000, implying a low obliquity of 1.5 deg. The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.41.2+2.5^{+2.5}_{-1.2} km and 3.60.3+0.7^{+0.7}_{-0.3} km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be 2.912.01+1.722.91^{+1.72}_{-2.01} g.cm3^{-3}, lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry, 2012, P\&SS 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g, LBT, ALMA).Comment: 12 pages, 6 figures, 4 table

    Vocal imitations and the identification of sound events

    Get PDF
    International audienceIt is commonly observed that a speaker vocally imitates a sound that she or he intends to communicate to an interlocutor. We report on an experiment that examined the assumption that vocal imitations can e ffectively communicate a referent sound, and that they do so by conveying the features necessary for the identifi cation of the referent sound event. Subjects were required to sort a set of vocal imitations of everyday sounds. The resulting clusters corresponded in most of the cases to the categories of the referent sound events, indicating that the imitations enabled the listeners to recover what was imitated. Furthermore, a binary decision tree analysis showed that a few characteristic acoustic features predicted the clusters. These features also predicted the classi fication of the referent sounds, but did not generalize to the categorization of other sounds. This showed that, for the speaker, vocally imitating a sound consists of conveying the acoustic features important for recognition, within the constraints of human vocal production. As such vocal imitations prove to be a phenomenon potentially useful to study sound identifi cation

    The viral protein corona directs viral pathogenesis and amyloid aggregation

    Get PDF
    Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.Peer reviewe
    corecore