248 research outputs found

    Advanced electro-optical imaging techniques

    Get PDF
    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes

    Reduction method with system analysis for multiobjective optimization-based design

    Get PDF
    An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach

    A computer simulator for development of engineering system design methodologies

    Get PDF
    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples

    Development of a CCD for ultraviolet imaging using a CCD photocathode combination

    Get PDF
    CCD in the electron-in mode, coupled with a bi-alkali photocathode to produce UV photon conversion, provides the following desirable features: (1) high UV response of the bi-alkali photocathode; (2) excellent imaging quality of a CCD area array; and (3) high signal-to-noise ratio due to the EBS (electron bombarded silicon) gain of the CCD operating in a tube configuration. This paper describes the rationale and progress made in developing a CCD for use as an UV imager

    Transapical miniaturized ventricular assist device: Design and initial testing

    Get PDF
    BackgroundLeft ventricular assist devices are increasingly used to treat patients with advanced and otherwise refractory heart failure as bridge to transplant or destination therapy. We evaluated a new miniaturized left ventricular assist device that requires minimal surgery for implantation, potentially allowing implantation in earlier stage heart failure.MethodsHeartWare (Miami Lakes, Fla) developed transapical miniaturized ventricular assist device. Acute (n = 4), 1-week (n = 2), and 30-day (n = 4) bovine model experiments evaluated hemodynamic efficacy and biocompatibility of the device, which was implanted through small left thoracotomy with single insertion at apex of left ventricle without cardiopulmonary bypass. The device outflow cannula was positioned across the aortic valve. The international normalized ratio was maintained between 2.0 and 2.5 with warfarin. Hemodynamic, echocardiographic, fluoroscopic, hematologic, and blood chemistry measurements were evaluated.ResultsThe device was successfully implanted through the left ventricular apex in all 10 animals. The device was operated at 15,000 ± 1000 rpm (power consumption, 3.5–6.0 W). The device maintained normal end-organ perfusion with no significant hemolysis (0–30 mg/dL). There were no pump failures or device-related complications. At autopsy, no abnormalities were seen in endocardium, aortic valve leaflets, or aortic root. There was no evidence of thromboembolism or abnormalities in any peripheral end organs.ConclusionsWe successfully demonstrated feasibility of a novel intraventricular assist device that can be completely implanted through left ventricular apex. This transapical surgical approach eliminates needs for sternotomy, device pocket, cardiopulmonary bypass, ventricular coring, and construction of an outflow graft anastomosis

    SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

    Full text link
    In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing

    A methodology for system-of-systems design in support of the engineering team

    Get PDF
    Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness informa- tion. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEP

    Sub-space approximations for MDO problems with disparate disciplinary variable dependence

    Get PDF
    The research leading to these results have been funded by the European Union Seventh Framework Programme FP7-PEOPLE-2012-ITN under grant agreement 316394, Aerospace Multidisciplinarity Enabling DEsign Optimization (AMEDEO) Marie Curie Initial Training Network

    Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts

    Get PDF
    SummaryThe promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9∗-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9∗-124 and transcription factors to generate specific neuronal subtypes
    corecore