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Abstract An approach to solving multidisciplinary design
optimisation problems using approximations built in sub-
spaces of the design variable space is proposed. Each
approximation is built in the sub-space significant to the
corresponding discipline while the optimisation problem is
solved in the full design variable space. Since the approxi-
mations are built in a space of reduced dimensionality, the
computational budget associated with building them can be
reduced without compromising their quality. The method
requires the designer to make assumptions on which design
variables are significant to each discipline. If such assump-
tions are deficient, the resulting approximations suffer from
errors that are not possible to reduce by additional sampling.
Therefore a recovery mechanism is proposed that updates
the values of the insignificant variables at the end of each
iteration to align with the current best point. The method
is implemented within a trust region based optimisation
framework and demonstrated on a multidisciplinary optimi-
sation of a thin-walled beam section subject to stiffness and
impact requirements.
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1 Introduction

In multidisciplinary design optimisation (MDO) problems
the individual disciplines are often evaluated using differ-
ent computational models, making it not only MDO but also
multi-model optimisation. At the same pace as computa-
tional performance is increasing, more complexity is built
into the computational models, making themmore computa-
tionally expensive. Thus when dealing with MDO problems
one may face a very computationally expensive problem.
For reviews onMDO architectures, see for instance (Cramer
et al. 1993), Sobieszczanski-Sobieski and Haftka (1997),
and most recently (Martins and Lambe 2013)

This work is focused on solving MDO problems using
the multidisciplinary design feasible (MDF) architecture as
formulated by Cramer et al. (1993) assisted by approxi-
mations. The reader is referred to Barthelemy and Haftka
(1993), Wang and Shan (2007), Forrester and Keane (2009),
and Viana et al. (2014) and Viana et al. (2010) for reviews
on metamodel-based optimisation. The main challenge of
using approximations is ensuring their quality. The num-
ber of training points required to obtain approximations
of desired quality increases superlinearly with the number
of design variables unless the responses are linear in the
design variable space. For MDO problems the total num-
ber of design variables can become very large leading to
the need for a large number of computationally expensive
simulations.

Given that there are variables in the MDO problem that
are not shared between all disciplines, i.e. have their own
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relevant subsets of design variables, approximations can be
built on only the sub-set of the design variables that is
significant to each discipline whilst the optimisation prob-
lem is solved in the full design variable space. There are
several examples of the use of this approach in the automo-
tive industry, e.g. by Sobieszczanski-Sobieski et al. (2001),
Kodiyalam et al. (2004), Ollar et al. (2014) and Ollar et al.
(2015) and Ryberg et al. (2015). The benefit is that sam-
pling and approximation building can be carried out in a
space of reduced dimensionality. This can greatly reduced
the required computational budget for obtaining an approx-
imation of sufficient quality. However, deficient assump-
tions, made when identifying significant variables, lead to
approximation errors that can not be reduced by additional
sampling.

In this work, an adaptive discipline-related sampling and
approximation building technique is introduced within the
trust region framework known as the Mid-Range Approxi-
mation Method (MAM). In contrast with the previous work,
it is part of a trust region strategy that accounts for erro-
neous assumptions by means of a recovery strategy that
updates the values of the variables classed as insignificant
but remain present in the full variable space during the
optimisation stage of the trust region strategy.

2 Mid-range approximation method

The mid-range approximation method (MAM), also known
as the multi-point approximation method, was originally
reported by Toropov (1989, 1992) and Toropov et al. (1993).
The MAM solves a typical constrained optimisation prob-
lem in the form

minimize
x

f0(x)

subject to fj (x) ≤ 1, j = 1, . . . , m
Ai ≤ xi ≤ Bi, i = 1, . . . , n

(1)

where f0(x) is the objective function, fj (x) is the j -th con-
straint, x is the vector of design variables and A and B
are the upper and lower bounds respectively on the design
variables. The optimisation problem (1) is replaced by a
sequence of approximate sub-problems defined as

minimize
x

f̃0
k
(x)

subject to f̃j
k
(x) ≤ 1, j = 1, . . . , m

Ak
i ≤ xi ≤ Bk

i

Ak
i ≥ Ai

Bk
i ≤ Bi

⎫
⎬

⎭
i = 1, . . . , n

(2)

where k denotes the current iteration number, f̃0
k
(x) is an

approximation of the objective function and f̃j
k
(x) is an

approximation of the j -th constraint function, both consid-
ered valid only in the current trust region. Ak

i and Bk
i are the

bounds of the current trust region where the sub-problem (2)
is solved for the current iteration. The solution procedure
for each sub-problem consists of sampling, creating approx-
imations, solving the approximate optimisation problem and
determining a new location and size of the trust region for
the next iteration. The trust region will move and change
size after each iteration until the termination criterion is
reached. Figure 1 illustrates the history of trust regions
through the sequence of sub problems in two dimensions.
The trust region strategy has gone through several develop-
ments to account for the presence of numerical noise in the
response function values (Van Keulen et al. 1996; Toropov
et al. 1996) and occasional simulation failures (Toropov
et al. 1999).

In the beginning of each iteration sampling, according
to a small-scale design of experiments (DOE), is carried
out within the trust region. Available sampling techniques
include a technique based on extensible lattice sequences
proposed by Hickernell et al. (2000) and a non-collapsible
randomised technique by Korolev et al. (2015). The sam-
pling process benefits from considering existing points,
evaluated in previous iterations, however, points that are far
away from the trust region may spoil the approximation and
are not considered. The region in which points are consid-
ered is referred to as the recycle region and is defined as an
enlargement of the trust region according to Fig. 2.

Approximations are created for each response using
the evaluated sampling points. Available approximation

Fig. 1 Typical history of the trust regions. In every iteration of
the optimization process the new trust region is centered around the
current solution and either kept the same size, reduced or enlarged
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Fig. 2 Points from previous iterations are re-used if they are located
within the recycle region defined as an enlargement of the trust region
by a factor br

techniques include approximation assemblies by Polynkin
and Toropov (2012), where intrinsically linear and ratio-
nal functions are assembled into a single approximation
using linear regression, the moving least squares method
(Lancaster and Salkauskas 1981) and kriging based on
a computationally efficient hyper-parameter optimisation
method by Mortished et al. (2016).

The approximate sub-problem (2) is solved using the
sequential quadratic programming (SQP) method developed
by Madsen et al. (2002), based on the work of Powell
(1985), starting from several points in order to increase the
chance of finding a good solution for multi-modal prob-
lems. Candidate solutions of the approximated sub-problem
(2) are evaluated in parallel with additional sampling points
as introduced by Korolev et al. (2015) in order to fully
utilise parallel high performance computing hardware. The
best candidate point is compared to the previously obtained
best point and, if superior, stored as the current best
point.

Finally, termination criteria are checked. The current best
point may not be located at the bound of the trust region, the
approximations must be of sufficient quality, and the trust
region must be sufficiently small compared to the initial
design region. If the criteria are met, the process is termi-
nated. Otherwise the position of the trust region is moved
so that its centre point coincides with the current best point.
The trust region strategy changes the size of the trust region
depending on the same factors as the termination criteria
and the process is repeated.

3 Sub-space approximations

Suppose that the responses belonging to a discipline in the
MDO problem only depend on a subset of the full set of
design variables, i.e. a set of the variables has none or very
little influence on the responses of the particular discipline.
An example of this from the automotive industry can be
seen in Fig. 3. The figure shows a simulation of a vehi-
cle subjected to a front crash load case. Each element is
coloured according to its level of internal energy. It can
be concluded that, as can be expected, the energy absorp-
tion is concentrated in the front of the vehicle and is not
much affected by the rest of the structure. A conceptual
partitioning based on design variable dependence for four
common automotive disciplines, Front Crash, Side Crash,

(a) Top view

(b) Side view

(c) Conceptual partitioning

Fig. 3 Front crash simulation of an automotive model. Each ele-
ment is coloured according to its level of internal energy. The model
was developed by the National Crash Analysis Center (NCAC), The
George Washington University, Washington, USA
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Rear Crash and Noise Vibration and Harshness (NVH) are
shown in Fig. 3c. With this partitioning discipline-related
approximations, hereafter denoted sub-space approxima-
tions, can be built, depending only on the set of significant
variables for each discipline.

3.1 Formulation of sub-space approximations

Here a mathematical formulation for introducing sub-space
approximations in approximation assisted MDO is given.
Unlike in previous work, all response functions are assumed
to be defined in the full variable space of the optimisation
problem in order to control insignificant variables. It will be
shown that when sub-space approximations are used within
a trust region framework, this becomes necessary to account
for possible deficient assumptions on partitioning.

Consider solving the optimisation problem (1) using
approximations. The optimisation problem becomes

minimize
x

f̃0 (x)

subject to f̃j (x) ≤ 1, j = 1, . . . , m
Ai ≤ xi ≤ Bi, i = 1, . . . , n

(3)

where f̃0(x) is an approximation of the objective func-
tion and f̃j (x) is an approximation of the j -th constraint
function.

Given that the design variables in the optimisation prob-
lem can be categorised either as significant or insignificant
for each related response. A projection can then be defined,
for each response j , from the design variable space onto
the space of the significant variables for that particular
response. This is denoted as

ξ j = P
ξ
j x

P
ξ
j : Rn �→ R

sj

}

, j = 0, ..., m (4)

where n is the number of design variables in the optimisa-
tion problem and sj is the number of significant variables
for the response j . A projection onto the space of the
insignificant variables is defined in the same manner as

ψj = P
ψ
j x

P
ψ
j : Rn �→ R

n−sj

}

, j = 0, ..., m. (5)

From here on the projections are described according to the
following convention

x =
[

ξ j

ψj

]

, = 0, ..., m, (6)

noting that the components of ξ j and ψj are present in x in
arbitrary order. The responses in the optimisation problem
can then be described as

fj (x) = fj

([
ξ j

ψj

])

, j = 0, ..., m (7)

where the values of ψj can be chosen arbitrarily since
they are deemed to be insignificant to the response. The
approximations of the responses, therefore, may now be
defined in the space of only the significant variables which
allows a re-writing of the approximate optimisation problem
according to

minimize
x

f̃0
(
ξ0

)

subject to f̃j

(
ξ j

) ≤ 1, j = 1, . . . , m

ξ j = P
ξ
j x, j = 0, . . . , m

Ai ≤ xi ≤ Bi, i = 1, . . . , n

(8)

where each approximated response is defined only in the
space of variables that are significant to the response. The
optimisation problem, however, is defined in the full design
variable space. This has the benefit that as each approxima-
tion is defined only in the space of the significant variables,
the sampling of training points only needs to be carried out
in that space while the values of the insignificant variables
are kept constant as demonstrated by Fig. 4. Hence if the
number of significant variables is small compared to the
number of design variables, the density of the training points
will increase leading to a better quality approximation as
compared to what would have been achieved otherwise.
Note that even though there is one projection per response,
practicalities may require groups of responses to use the
same projection, e.g. due to several responses being evalu-
ated from the same simulation, or even responses belonging
to different responses but connected through multi-physics
coupling such as fluid structure interaction.

Fig. 4 Sampling shown in two dimensions. Vertical axis corresponds
to the significant variable ξm and horisontal axis to the insignificant
variable ψn. Sampling is carried out in the space of the significant
variable while the insignificant variable is kept at a constant value, c
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3.2 Sub-space approximations in trust regions

In this section an approach to building sub-space approx-
imations within the MAM is proposed. A recovery mech-
anism for erroneous identification of significant variable
for the sub-space partitioning is also suggested. Sub-space
approximations can be introduced in the MAM framework
by re-writing the sequence of optimisation problems (2) as:

minimize
x

f̃0
k (

ξ0
)

subject to f̃j
k (

ξ j

) ≤ 1, j = 1, . . . , m

ξ j = P
ξ
j x, j = 0, . . . , m

Ak
i ≤ xi ≤ Bk

i

Ak
i ≥ Ai

Bk
i ≤ Bi

⎫
⎬

⎭
i = 1, . . . , n

(9)

noting that the mid-range approximations created in each
iteration are now functions of the significant variables only.
The significant variables for each discipline are identified
by the designer. Such judgement may be based on, for
instance, engineering experience or design variable ranking
studies. In the simplest form of sub-space approximations,
used in the work by (Sobieszczanski-Sobieski et al. 2001),
Kodiyalam et al. (2004), Ollar et al. (2014) and Ryberg et al.
(2015), deficiencies in sub-space partitioning, i.e. by failing
to identify significant variables, can result in approximation
errors that cannot be resolved by additional sampling. This
is due to changes in response values as a consequence of
changes in the insignificant variables. Such changes can not
be included in the approximations as they are not defined in
the space of the insignificant variables.

Regardless of how carefully the partitioning of variables
is made, there is always a risk that significant variables
will be incorrectly identified as insignificant. Therefore a
recovery mechanism for such errors is needed. This can be
implemented in the trust region strategy by making sure
that the vector of insignificant variables for the individual
response is updated at the end of each iteration depending
on the current best point as proposed by Ollar et al. (2015).

Let x∗
k−1 denote the solution vector to the previous iter-

ation (k − 1) for the optimisation problem (9). Recalling
(4) and (5), the projection of the current best point onto the
space of the significant variables can be written as

ξ∗
j = P

ξ
j x

∗, j = 0, ..., m (10)

and onto the space of the insignificant variables as

ψ∗
j = P

ψ
j x∗, j = 0, ..., m (11)

Any change in the response values as a consequence
of changes in the insignificant variables ψ∗

j will not be
accounted for by the approximations and will mean that
even if the approximations are of excellent quality in the
space in which they are defined, there will be a discrep-
ancy between the result they deliver and the one returned by
the verification of the current best point. In this work this
discrepancy is recovered in the following iteration by set-
ting the constant value of the insignificant variables during
sampling according to the current best solution according to

ψk = ψ∗
(k−1) (12)

where ψk denotes the values of insignificant variables dur-
ing sampling in the current iteration and ψ∗

(k−1) the current
best solution in the previous iteration. Subscript j denoting
the response number has been omitted for brevity. Figure 5
demonstrates how the value of ψn changes from the previ-
ous iteration, k − 1, to the current iteration, k, for the two
dimensional case. As the approximations in the current iter-
ation are built with the values of the insignificant variables
updated according to the current best solution, any changes
in response values due to changes in insignificant variables
from the previous iteration will be taken into account by the
approximations in the current iteration.

With the possibility of significant variables being iden-
tified as insignificant, there is a risk that existing points
located within the recycle region but far away from the
current value of the insignificant variables may spoil the
resulting approximation. The recycle-region size is there-
fore multiplied by a reduction factor bs , for the insignificant
variables, as shown in Fig. 6.

Fig. 5 The values of the
insignificant variables in the
solution of iteration k − 1 differ
from the same values in the
sampling of iteration k-1.
Potential changes in the function
values as a consequence of this
is taken into account in iteration
k by updating the values of the
insignificant variables for
sampling according to the
solution of iteration k − 1

(a) Sub-problem in iteration k-1 (b) Sub-problem in iteration k
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Fig. 6 The recycle region (see Fig. 2) is reduced for insignificant
variables by multiplication by a factor of bs

4 Demonstration on a finite element model

This section describes a simple benchmark MDO study of
a thin-walled beam structure subject to static and impact
requirements. The impact requirements have disparate but
overlapping variable dependence which makes it suitable
for demonstration of the proposed sub-space approximation
approach.

4.1 Beam model

The beam is 1.2 m long and is made of two thin walled
hat sections welded together along two flanges as shown in
Fig. 7. It is modelled using shell elements with an average
mesh size of 10 mm. The welds are modelled using single

Fig. 7 The thin-walled beam consisting of two hat sections spot-
welded together along the flanges. Top part of structure has been
detached at two locations

hexahedron elements connected to the shell elements using
a fixed contact formulation. The structure is divided into 26
components, shown in Fig. 8, with individual thickness val-
ues which are to be determined. The starting thickness is 3
mm for each component and the allowable thickness range
is 1-5 mm.

4.2 Load cases

The beam is subjected to one static load case and three
dynamic load cases as outlined below and shown in Fig. 9.

(a) Torsional stiffness A free node on the lefthand side of
the beam is constrained in all translational degrees of
freedom as well as from rotation around the longitu-
dinal axis of the beam. The node is connected to the
edges of component c25 (see Fig. 8) using one dimen-
sional elements (RBE3) that distributes forces from
the free node to the structure. At the right hand side
of the beam a force is applied to a lever arm, con-
nected to the beam with the same type of connection,
resulting in a moment around the longitudinal axis of
the beam. The response is the resulting rotation at the
point where the moment is applied. The mass of the
structure is also used as a response and is extracted
from this load case. The load case is analysed using a
static implicit solution procedure in Altair OptiStruct
(Altair Engineering, Inc., 2014a).

(b) Cylinder impact left (CL) A heavy cylinder with an
imposed velocity impacts the left section of the beam
in vertical direction. The beam is supported in ver-
tical direction by a rigid plane. At impact the beam
is compressed by the heavy cylinder. The response is
measured as the vertical deformation of the top part
of the beam, caused by the cylinder impact. The load
case, which is a dynamic explicit load case, is anal-
ysed using Altair RADIOSS (Altair Engineering, Inc.,
2014b).

(c) Cylinder impact center (CM) The load case definition
is the same as for (b) except for the impact position of
the cylinder which is now at the centre of the beam.

Fig. 8 Exploded view of the 26 panels included in the MDO. Every
panel has designable thickness range between 1 - 5mm
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(a) Torsional stiffness (b) Cylinder impact left

(c) Cylinder impact center (d) Cylinder impact right

Fig. 9 Load cases included in the MDO

(d) Cylinder impact right (CR) The load case definition is
the same as for (b) and (c) except for the impact posi-
tion of the cylinderwhich is now at the right section of
the beam.

4.3 Optimisation problem set up

The objective of this MDO problem is to minimise the mass
of the beam subject to sufficient torsional stiffness and not
exceeding maximum intrusion from the cylinder impact.
The target values are summarised in Table 1 together with
initial values, which are normalised to target, for each
response. The mass and torsion response have available
gradients which are used during the optimisation to build
gradient-enhanced approximations. As the mass response
is linear in the space of the design variables a simple lin-
ear regression using the least squares method (LSM) is
used to approximate this response. The remaining responses
are approximated using the moving least squares method
(MLSM).

Table 1 Summary of attributes for each response

Response Initial Target Gradients Approximations

Mass 1.00 min Yes LSM

Torsion 0.98 ≤ 1.00 Yes MLSM

CL 1.18 ≤ 1.00 No MLSM

CM 1.18 ≤ 1.00 No MLSM

CR 1.17 ≤ 1.00 No MLSM

Four types of optimisations were carried out as out-
lined below. All optimisations were carried out using the
MAM with 10 candidate points in each iteration obtained
as the best out of 20 SQP optimisations starting from dif-
ferent points, sampled within the trust-region. The number
of significant variables identified for each discipline and the
corresponding number of points per iteration is presented
in Table 2 for each optimisation. The convergence criteria
was set such that the approximation quality must be below
5 % and the trust region size must be smaller than 10 % of
the design region. The DOE method used for sampling of
training points and start points for the SQP is based on a
random number generator and will hence produce a differ-
ent set of points depending on the initially chosen seed. In
order to account for this uncertainty 50 optimisations with
varying seed were carried out for each of the optimisation
types described below.

Table 2 No. points per iteration for each optimisation

Opt. 1 2 3 4

ns np ns np ns np ns np

Torsion 26 39 26 39 26 39 26 39

CL 26 39 7 39 7 10 7 10

CM 26 39 12 39 12 18 11 18

CR 26 39 7 39 7 10 7 10

ns - number of significant variables

np - number of points per iteration
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(a) Torsional stiffness (b) Cylinder impact left

(c) Cylinder impact center (d) Cylinder impact right

Fig. 10 Sub-space partitioning for the beam structure. Insignificant variables are showed as transparent

4.3.1 Optimisation 1 - Full space approximations

The first optimisation is set up as a point of comparison
using the MAM without sub-space approximations. The
number of points evaluated per iteration is chosen as np =
1.5 × n = 39 per load case, leading to a total of 156 points
per iteration.

4.3.2 Optimisation 2 - Same budget

In the second optimisation sub-space approximations with
the proposed recovery mechanism is used within the MAM.
Partitioning of the beam model is shown in Fig. 10, where
insignificant variables are shown transparent. The optimisa-
tion is carried out with the same computational budget per
iteration as the first iteration in an attempt to increase the
quality of the approximations and hence a greater chance
of the trust region moving in the right direction early on
in the optimisation, leading to fewer iterations required for
convergence.

4.3.3 Optimisation 3 - Decreased budget

In the second optimisation sub-space approximations with
the proposed recovery mechanism is used within the MAM.
The partitioning of variables is the same as in the sec-
ond optimisation. Here the number of points are determined
individually for each discipline as ns = 1.5 × ns, where ns

is the number of significant variables for the discipline. The

aim of the optimisation is to keep the number of required
evaluations per iteration to a minimum.

4.3.4 Optimisation 4 - Erroneous partitioning

In the final optimisation sub-space approximations with the
proposed recovery mechanism is used within theMAM. The
partitioning of variables is the same as in the second and
third optimisation with one exception. Variable c7, shown
in Fig. 11, which is significant to discipline CM, is deliber-
ately identified as insignificant in order to test the proposed
recovery mechanism outlined in Section 3.2.

4.4 Results

The results of the study is presented in Fig. 12. For each
optimisation the median, upper and lower quartiles and the
minimum and maximum value is shown for the number of

Fig. 11 Significant variable erroneously identified as insignificant
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OPT1 OPT2 OPT3 OPT4
(a) Number of iterations
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(d) Constraint violations

Fig. 12 Statistical results from 50 runs with varying seed of each
optimisation type, 1-4

iterations, number of evaluations, the objective function and
the maximum constraint violation.

The first optimisation which was used as a comparison
for the other three optimisations finished on average in 10.5

iterations, having spent 1407 evaluations, and with an aver-
age reduction in objective function of 13.2 %. The second
optimisation, which was using sub-space approximations
with the same number of evaluations per iteration as the first
optimisation, finished on average in 8.5 iterations, 2 itera-
tions less than the first, having spent 1242 evaluations, 165
less than the first optimisation, and with an average reduc-
tion in the objective function of 13.5 %, 0.3 % more than the
first optimisation. The third optimisation, which was carried
out using sub-space approximations with individual alloca-
tion of the number of points per iteration for each discipline,
finished on average in 11 iterations, slightly more than the
first optimisation but having spent 986 evaluations, 421 less
than the first optimisation and 256 less than the second. The
average reduction in objective function was 13.2 %, just like
in the first optimisation. The fourth and final optimisation,
where a significant variable was deliberately identified as
insignificant, finished on average after 10.5 iterations, hav-
ing spent 1052 evaluations, with an objective reduction of
12.6 %, 1 % less than the first optimisation.

It can be concluded from the results that, by using
sub-space approximations for the presented example, it is
possible to reduce the number of required iterations and/or
the number of evaluations for carrying out the optimisa-
tion without compromising the results. By maintaining the
number of points that are needed for full space optimisation
when using sub-space approximations, as in optimisation
2, the number of iterations can be reduced. If instead, the
number of evaluations per iteration is individually allo-
cated, as in optimisation 3, for each discipline, a reduction
in the number of evaluations can be reduced. It can also
be included from the fourth optimisation that the proposed
recovery mechanism makes sure that erroneous identifi-
cation of significant variables does not lead to constraint
violations, but instead to a slight penalty in the objective
function.

5 Conclusions

An approach to carrying out multidisciplinary design opti-
misation using approximations built in individual sub-
spaces for each discipline while carrying out the optimi-
sation in the full variable space has been proposed. The
sub-spaces in which the approximations are built are defined
by the sets of significant variables for the individual dis-
ciplines. The main benefit of the technique is the dimen-
sionality reduction of the approximations and sampling.
This enables reducing the computational budget required to
obtain approximations of sufficient quality.

The method relies on the designer to make assumptions
on which variables are significant for each response. If such
assumptions are deficient, approximation errors can occur
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that cannot be reduced by additional sampling. Therefore a
technique was proposed that can recover from such errors
within a trust region based optimisation framework. By
updating the values of the variables identified as insignifi-
cant, but remain present in full space, according to the best
current solution in each iteration, the technique can recover
from such errors.

The approach was demonstrated on a finite element
example of a thin-walled beam. A reduction in the computa-
tional budget was shown for optimisations carried out using
the sub-space approximation approach compared to conven-
tional optimisations. In addition, a test where a significant
variable was deliberately identified as insignificant was car-
ried out and showed the validity of the developed recovery
mechanism.
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