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A COMPUTER SIMULATOR FOR DEVELOPMENT OF ENGINEERING SYSTEM DESIGN
METHODOLOGIES

S.L. Padula, and J. Sobieszczanski-Sobieski

SUMMARY

The simulator is a computer program which mimics the qualitative behavior
and data couplings occuring among the subsystems of a complex engineering
system. It eliminates the engineering analyses in the subsystems by replac-
ing them with judiciously chosen analytical functions. With the cost of
analysis eliminated, the simulator is used for experimentation with a large
variety of candidate algorithms for multilevel design optimization method-
ologies to choose the best ones for the actual application. Thus, the
simulator serves as a development tool for multilevel design optimization
strategy. The simulator concept, implementation, and status are described
and illustrated with examples.

INTRODUCTION

Complex engineering systems, e.g., an aircraft, a car, a ship, or an elec-
tric power station are usually amenable to decomposition in which the whole
is treated as an assembly of smaller parts. Traditionally, engineers have
used this technique to break their large design task into smaller subtasks
executed concurrently, thus developing a broad workfront and compressing the
design process schedule. Recently, that approach has been augmented by
numerous formal methods incorporating mathematics into what used to be a
predominately heuristic practice, e.q, (refs. 1 and 2). The simulator to be
described in this paper is a tool for the development of such methods.

Schematically, the decomposition may be presented as a pyramid of hierarchi-
cally related modules, each corresponding to a design subtask. The subtasks
may correlate with physical subsystems or with engineering disciplines con-
tributing to the system design. In the former case, the decomposition is
called an object decomposition, while the latter case is known as an aspect
decomposition (ref. 1).

The way the content of each module (box in fig. 1) is defined depends on the
intended use of the diagram. For management purposes the modules are groups
of people. For the purposes of this paper each module represents an algo-
rithm converting input into output. The algorithm may include both analysis
and optimization. Consistent with that definition, the directed lines in
figs. 1 portray information flow (data channels) from one module to another,

Obviously, execution of a design process organized in a manner depicted in
fige 1 requires specification of all the module algorithms and definition of
the meaning and volume of the data moving along each channel. It also re-
quires definition of an overall procedure sequencing the module algorithms



in time. Here, the overall procedure takes the form of a multilevel optimi-

zation whose purpose is to satisfy constraints and improve the performance
of the whole system.

In the present paper, the module algorithms will be treated as black boxes
defined to the remainder of the system by their input-to~output transforma-
tion, and the input—-output data content. This assumption leaves us free to
concentrate on the issues of the data exchange among the modules, and the
effective and efficient organization of an iterative algorithm for the
multilevel optimization of the decomposed system. The simulator program
described in this paper is a tool for doing that without paying the labor
and computer costs of analyses that would have to be repetitively carried
out inside the modules of the decomposed system if a real physical engineer-
ing system was used as a case study. From a research and development stand-
point these costs can be prohibitive.

The basic idea which makes the simulator operate inexpensively is to replace
the detailed engineering analysis in each module by explicit, simple func-
tions that model qualitatively the module behavior. The paper's purpose is
to describe that idea in detail, with enough basic information about multi-
level optimization to put the simulator in context of the methodology devel-
opment. The discussion will include information on the computer implementa-
tion of the simulator, its development status, and a review of typical
results obtained to date. Familiarity with the concept of design optimiza-
tion by search for a constrained optimum in a design space, and with the
pertinent terminology is assumed.

DECOMPOSITION AND MULTILEVEL OPTIMIZATION

Multilevel optimization relies on object or aspect decomposition of a system
to break the system optimization task into a set of suboptimization tasks
and a coordination task which restores the coupling among the subtasks. It
can be best explained by contrasting it with a conventional optimization
without decomposition.

In a conventional optimization we define for the entire system a vector of
design variables X, and a set of inequality constraints G(X). No distinc-
tion is made among the elements of X, and G that may belong to different
subsystems. Choosing a suitable system performance measure as the system
objective function F(X), we solve a classical optimization problem

min F(X) subject to constraints G(X) < 0; Lx < X< Ux (1)
X

where Lx' Ux are side constraints, using a nonlinear mathematical program-
ming (NLP) procedure starting with a "best guess"” initial X. The numerical
information about the values of the functions F, G and their gradients
needed by the NLP procedure comes from the analyses of the system modules
and from the analysis of the assembled system. This implies that the system
may still be decomposed for the purpose of analysis but not for the purpose
of optimization.

In a multilevel optimization, the system is decomposed for both the analysis
and optimization purposes as shown in fig. 1. The system symbolized by the




box on the top of the pyramid (level 1) is a "parent" to the "daughter" sub-
systems at level 2. The parent's output becomes the daughter's input, PI.
Each daughter may be a parent to daughters at the next lower level - a
recursive relationship that may extend to unlimited number of levels.

For each subsystem we define: Y - a subset of X; g - a subset of G; and C -
a "local" objective function. For the assembled system we define also an
objective function F(XS) and a subset of constraints g5 (Xs), where Xg
represent the system design variables.,

Several methods exist for optimization of a decomposed system. The algo-
rithm introduced in (refs. 2 and 3) will be used here as an example by which
to introduce the simulator and to describe its mechanism. That algorithm
can be summarized by the following steps:

1. Initialize all design variables.
2. Analyze from the top down.

3, Optimize each subsystem proceeding from the bottom up (concurrent
suboptimization tasks).

4, Optimize the assembled system (the coordination task).

In step 2, output from each parent is used as input in the daughter anal-
yses. In step 3, the optimization problem solved for each subsystem
separately, beginning at the very bottom of the hierarchy, is

min C(Y) subject to constraints h = PI(X) - £(Y) = O (2)
Y

L <Y<U
Yy Y

where LY and Uy are the side constraints.
The "local" objective function C is formulated as a cumulative constraint
(ref. 4), written in form of a function

¢ =— 1n(} exp(pgj)) (3)

1

P
]

where p is a constraint satisfaction tolerance. The function defined by

eq. 3 (introduced in (ref. 5)) has the property of being a differentiable

approximation to the maximum constraint in a particular subsystem, so that

max(g) € C € max(g) + 1ln{(m)/p (4)

where m is the number of the constraint functions.

The equality constraints h in eq., 2 are needed whenever some of the elements
of PI are functions not only of X but also of Y. For example, if a subsys-
tem is a beam member in a framework structure, then its cross-sectional area
may be imposed on it from above as an element of PI. However, that area is
also a function of the beam cross-sectional dimensions Y. In such cases,
the element of PI prescribes a certain property of the subsystem and the
constraints h enforce that prescription by equating the PI to some function



of the daughter variables Y. In effect, any changes in the local design
variables, Y, are restricted so as to maintain the cross-sectional area
constant., Owing to the constraints h, the validity of all the PI vectors
obtained in step 2 is protected when the subsystems are optimized in step 3.
The functions of X and Y that appear together in an equality constraint h
will be referred to as the coupling functions. They represent one particu-
lar conduit for a parent to influence its daughter. There are other con-
duits for that influence that will be defined later.

Solution of eq. 2 yields a constrained minimum of C, denoted C and the cor-
responding solution vector Y. Derivatives of C with respect to the elements
of PI are now calculated using the optimum sensitivity algorithm introduced
in (ref. 6), to obtain an approximate value of C, denoted C, as a function

of PI. That function, expressed by the linear part of the Taylor series, is

E=E+Z———API; k =12+ z; (5)
where z is the number of the parent inputs to the subsystem. Since PI is a

function of X, ¢ is ultimately related to X

aPIk

=T+ ] o g AX | (6)
x °°q

q

where q identifies the elements of X that influence the PI.

Proceeding, stil]l within step 3, to the next level up, the daughter c
approximated by ¢ in eq. 6 is appended to the parent vector g as another
inequality constraint. That means the information about the subsystem
constraint satisfaction, or violation, measured by the C quantities accu-
mulates recursively, and in step 4 the system optimization problem becomes:

min F(XS) subject to constraints gs(xs) <0 (7)
X

s
C; <0 i=1+¢x

where r is the number of subsystems in level 2.

The procedure is iterated in order to update the analysis and sensitivity
information according to the changed values of the design variables, until
all the constraints are satisfied at all levels and the system objective
function converges.

In the above discussion it was assumed that the data flow in the system
analysis (step 2) is strictly top down, and that each daughter has only one
parent. This is a simplification. In decomposition of the real engineering
systems, the data flow pattern may be more complicated as illustrated in
fige 2. In addition to the top-down, single parent flow, we may have:

1. more than one parent per daughter (multiple parents); 2. output from a
daughter needed as input into the parent analysis (reverse interaction);

3. output from a daughter needed as input into another daughter (sister)




analysis at the same level (lateral interaction); 4. input/output channels
extending beyond the next lower, or higher, level (multilevel span), which
impacts the simulator implementation and its data management. An extensive
study of a transport aircraft as an engineering system (ref. 7) provided
numerous examples of such complexities.

The above complications in the data flow pattern have to be properly re-
flected in the optimization algorithm. Specific algorithm augmentations
designed to handle the situations 1 through 4 were proposed in (ref. 3).
However, no rigorous, mathematical means could be identified to ascertain
the convergence properties of the algorithm whether in the simplest form
introduced in the foregoing discussion, or with characteristics 1 through 4
above. This amplifies the importance of numerical testing of multilevel
design optimization algorithms for convergence and other performance
characteristics.

THE SIMULATOR CONCEPT

The algorithm in its simplest form has been tested with good results in ap-
plications to structural optimization (refs. 4, 8, and 9), and to multidis-
ciplinary problems in aeronautics (refs. 10 and 11). While validation by
engineering system test cases is a necessary part of the methodology
development, the referenced experience showed that in such testing the cost
of subsystem analysis is so large that it severely restricts the scope of
experimentation that can be accomplished within given resources.

The simulator described in the remainder of this report is intended to be a
means by which an exhaustive experimental testing of the multilevel optimi-
zation algorithms can be conducted without paying the costs of detailed
engineering analyses. The key to an inexpensive simulator is a replacement
of the physical analyses in the subsystems by explicit analytical functions
whose evaluation cost is negligible. Such functions can be constructed tak-
ing advantage of the insight into the behavior of typical physical subsys-
tems. That behavior may be analytically complex, but quite frequently it is
also descriptively simple and qualitatively well known in advance. For
example, it may take a large finite element model analysis to determine the
axial stress in a structural member, but it is well known that that stress
will be diminishing with the increase of the member cross-sectional area, so
that a simple, explicit function, stress = constant/area captures that
behavior.

It may be argued that the family of monotonic polynomials is adegquate to
represent a large subset of the objective functions and constraints encoun-
tered in engineering applications. With the increase of the design vari-
ables, these polynomials either increase, or decrease, with or without
diminishing returns. Table 1 defines the functions, their nature, design
variables, and parameters which are currently defined in the simulator.
Function 1 is used only for the system objective functions therefore its
variables are X_. Functions 2 through 4 are used for the subsystem con-
straints so their variables are Y,

The coefficients of the polynomials are either randomly generated constants
or they may be used as another conduit, in addition to the previously de-
fined coupling functions, to transmit influence of one subsystem on another.
Two mechanisms for generating that influence are shown in figs. 3 and 4.




The simpler mechanism depicted in fig. 3 substitutes a parent design vari-
able for a parameter in the daughter analysis. The other way shown in

fig. 4 introduces another type of a coupling function, denoted Q, computed
in the parent analysis and substituted for a parameter in the daughter anal-
ysis. A structural system example of the Q-type of a coupling function is
the boundary interaction force acting on a substructure. That force is
computed in the analysis of the assembled structure and is considered as a
constant load in the substructural analysis.

Both above coupling mechanisms may be used simultaneously. The coupling
strength depends on the relative magnitude of the parameters transmitted and
on the power to which they are raised in the daughter analysis.

The pattern in which the parameters are transmitted from one subsystem to
another constitutes the means by which a variety of hierarchical relation-
ships may be simulated, ranging from the simple top-down hierarchy shown in
fig. 1 to a complex one described in fig. 2 and associated discussion.

The simulator implementation has been progressing from the simplest system
toward increasing complexity and has reached the status summarized in

table 2. For generating benchmark results the simulator provides an option
of single level optimization in which the system analysis is decomposed but
the optimization is defined by eq. 1. For the multilevel optimization pur-
poses, the current implementation includes all of the function types defined
in table 1, both types of the parent-daughter influences shown in figs. 3
and 4, and more than one parent per daughter case. The latter required an
augmentation to the previously described multilevel optimization procedure,
by introducing a cumulative constraint representing the minimized cumulative
constraints of all the p subsystems at a given level

1 = .
¢, =3 ln(g exp(pCi)); i=1+p (8)

This constraint, approximated using the optimum sensitivity derivatives as
in eq. 6, is appended to the vector of constraints in each of the subsystems
at the next higher level. This allows the multiple parents to exert cross-
influence on the shared daughters, in proportion to the magnitude of the
corresponding optimum sensitivity derivatives.

All the optimizations in the subsystems and at the system level are carried
out using the technique of usable-feasible directions implemented as de-
scribed in ref. 12. The simulator has been coded as a modular Fortran pro-
gram. The decomposed system is described by a data structure made up of the
pelynomial coefficients (table 1). In this study, some of the coefficients
in that structure are arbitrary constants, e.g., all r. = 1, others are ran-
domly generated, e.g., the coefficients a, b, ¢, and 4, and, finally, some
coefficients are reserved to implement the coupling shown in fig. 3, e.q.,
the coefficients e* and h*. With the exception of those marked with the
asterisk, the coefficients remain constant in the optimization execution and
may be saved and used repeatedly. Details of the computer implementation
are given in ref. 13. The simulator has also been implemented in a dis-
tributed manner on a network of computers to investigate benefits from
concurrent execution of the subsystem analyses and optimizations.




SAMPLE OF RESULTS

Table 3 defines a simple system in which there is one parent per daughter
and the mechanism shown in fig. 3 is used to substitute the parameters in
the subsystems. This test case was used to compare the convergence of
single and multilevel optimization methods. Figs. 5 and 6 compare the
single level optimization history (histogram) with the multilevel optimiza-
tion histogram for the same system. The system level objective is plotted
versus the total number of constraint evaluations that are required as the
iteration advances. The number of evaluations is taken as a measure of the
computational cost, assuming that all the constraint functions are equally
expensive to compute - an assumption approximately valid for the simulator,
but not necessarily valid for engineering systems in general.

Fig. 5 depicts histograms for a particular initialization deliberately cho-
sen to be quite close to the optimum. In this case, the multilevel optimi-
zation converges smoothly. On the other hand, the single level optimization
converges quickly at first and then slows down nearing the optimum. After
800 constraint function evaluations, each method has identified a feasible
solution. The solution reached by the multilevel optimization has a
slightly lower objective.

Fig. 6 is a histogram of an optimization whose initialization is far from
the optimum. Again, the multilevel optimization converges smoothly but this
time it requires about 1400 function evaluations to identify a feasible
solution and 200 additional evaluations to reach a final solution. In con-
trast, the single level optimization finds a feasible solution after only
800 function evaluations but then requires additional 600 function evalua-
tions (1400 total) to reduce the objective to its final value.

To investigate the effects of the system coupling on the convergence, the
complexity of the system defined in table 3 was increased by using the sub-
stitution pattern given in table 4. The effect of the revision is that each
daughter has multiple parents. Fig. 7 and fig. 8 show the multiple parent
effect on the single level optimization to be much stronger than the effect
on the multilevel optimization. In both figures the multilevel optimiza-
tions are monotonic although somewhat slowed down in their convergence,
while for the single-level optimization fig. 7 shows a jagged graph with an
exceedingly slow terminal convergence phase and fig. 8 shows a failure to
converge.

It should be pointed out, however, that at least part of the advantage of
the multilevel optimization shown in the above comparisons may be attributed
to the use in that method of the usable-feasible directions algorithm en-
hanced (at the system level only) with the well known constraint relaxation
(ref. 14), while no such enhancement was implemented in the single level
optimization.

CONCLUDING REMARKS

A simulator for multilevel optimization of complex hierarchical systems has
been developed. Its purpose of radically reducing the analysis cost in
experimentation with various multilevel design optimization algorithms was
achieved by using explicit functions instead of computaticnally expensive
analyses that would have to be executed in each subsystem, and choosing



these functions so as to preserve the subsystem response qualitatively.

With the cost of analysis practically eliminated, the simulator can be used
to investigate a wide range of multilevel optimization algorithms and system
configurations.

The simulator demonstrated its usefulness as means for evaluating efficiency
and effectiveness of the multilevel optimization algorithms, and revealing
the effects of the subsystem couplings on their convergence characteristics.
The experience to date showed for the cases tested: 1. Agreement of the
multilevel optimization results with the benchmark results produced without
decomposition; 2. Acceptable rate of convergence for the multilevel optimi-
zation algorithms tested, including instances where the multilevel optimiza-
tion converged faster than the reference single level optimization; 3. The
multilevel optimization rate of convergence slightly reduced when the
strength and complexity of couplings was increased; moreover, there was no
appreciable detrimental effect on the minimum of the system objective and
ability to satisfy the constraints.

In summary, the simulator confirmed the viability of those multilevel opti-
mization algorithms that were tested, and has been shown to be a useful tool
in the development of these algorithms for the use in design of complex
engineering systems.
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Table 1.- The Simulator Functions
Nature Expression Variables Farams
eters
. 2
Increasing z . X, x, X r
. & 71T i 7s
quadratically i
Decreasing with -a - ) by, + 2 c.y + 2 dk(e*h* a
L 1 s o ii & 73
diminishing i i b
returns
3 = - *h % .
Increasing a + ; biyi + Z dk(ekhk) Y3 Y c
i k d
1 1
Increasing with -a + X b.y./2 + 2 dk(e*h*) /2 e
s e s s R Tl § k k
diminishing i k h
returns

+ = positive real numbers.

* - equated to parent x.

Table 2.- Simulator Status

Characteristic

Implementation status

Function types

f f3, f4 defined in table 1

2'

Type of the
parent-daughter
influence

1. Coupling functions in the equality
constraints h in eq. 2 - no

2. Mechanism illustrated in fige. 3 - yes

3. Mechanism illustrated in fig. 4, with
the parameters e* and h* as the only
ones subjected to substitution - yes

Complexity of the
analysis data flow

0. Single parent,
top-down

1. Multiple parents

2. Reverse interaction

3. Lateral interaction

4, Multilevel span

yes
yes
no
no
yes

Multilevel optimization
algorithm

0. Reference algorithm defined by eq. 1
1. Algorithm defined by eqgs. 2-7
2. As above modified according to eq. 8

Search for constrained
minimum

Usable-feasible directions technique at
all levels

10




Table 3.- Four-Level System

No. of
constraints

Variables

Parameters

No. of
constraints

Variables
Parameters

1. Each box represents a subsystem - a daughter

above

3
Objective ? xf
Variables Xl,' X2, X3
Parameters. None
3 2 2
Yp Yo ¥g Yo Y7 Vg Y2, Vi3 Yie Y15
X)X X Xy, Xy % Xp X Xy
1 2 3 2
Yo Ys Yo Yio iy Yie Yir Yis | Yo Yoo
Yp Yo ¥q Yo Y7 Y3 Y 13 Yie V15
No. of constraints| 2
Variables Yzl' Yzz
Parameters| Y16 Y17 Y18

to a parent immediately

2. Cumulative constraint C is used as the objective function in each
subsystem optimization.

Table 4.- Four-Level System With Multiple Parent Couplings

No. of
constraints

Variables

Parameters

No. of
constraints

Variables
Parameters

3
Objective zl: xl2
Variables X, Yo Xy
Parameters None
3 2 2
' 2 Y3 Yo Y7 Vs Y2, Y3 Ve Vs
Xp Xp Xg Xp X X3 Xp Xpr %3
1 2 3
Yo Ys Yo Yio 'nn Yie iz V1| Yio- Yoo
Ny Y| % Y Yo Yy | Y Y Y3 | Yyp Yys
No. of constraints| 2
Variables er Ygz
Parameters| Y16 Y17+ V1g

1. The variables and parameters underlined with
multiple parent pattern.
2. Cumulative constraint C is used as the objective function in each
subsystem optimization.

11
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Decomposed system with more complex data flow.
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Decomposed system: simple top-down case of the analysis data flow.
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Level 3




Fig. 3

Fig. 4
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daughter.
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Fig. 5 Comparison of multilevel and single level histograms. Benchmark
case with all design variables initialized to unity, X = { 1. }.
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Fig. 6 Comparison of multilevel and single level histograms. Alternate
initialization, X = { 3. }.
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Fig. 7 Comparison of multilevel and single level histograms. Multiple
parent case, X = { 1. }.
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Fig. 8 Comparison of multilevel and single level histograms. Multiple
parent case, X = { 3. }.
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