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REDUCTION METHOD WITH SYSTEM ANALYSIS FOR
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ABSTRACT

We present an approach for reducing the number of variables and constraints, which

is combined with System Analysis Equations (SAE), for multiobjective optimization-based

design. In orde,' to develop a simplified analysis model, the SAE is computed outside an op-

timization loop and then approximated for use by an optimizer. Two examples are presented

to demonstrate the approach.

1Research was SUl)ported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1 Introduction

There are mainly two classes of methods for handling optimization-based design of complez

engineering systems. In the context of this paper, a complex system entails two or more

of the following features: (i) has computationally costly SAE, (ii) has a large number of

variables and nonlinear constraints, (iii) is multiobjective, and (iv) is decomposable into a

number of subsystems which hierarchically or nonhierarchically interact with one another.

The first class of methods are mostly applied to handle features (i) and (ii) (Vanderplaats,

1984, where further references can be found), and more recently (iii) (see, for example, Zhou

and Tits, 1993a). In majority of the methods in this class, the system analysis is performed

outside an optimization loop; often the system analysis (which is a part of an outside loop,

see Figure 2 for an example) is approximated for use in the optimization loop (the inside

loop, see Figure 2) in an attempt to reduce the number of costly and detailed analyses. The

number of variables can also be reduced by design variable linking (Vanderplaats, 1984), this

is usually done by problem-dependent assumptions (e.g., symmetry in structural design).

Finally, the number of constraints can be reduced by employing only a significant subset of

constraints (the active set) in the optimization loop (Zhou and Tits, 1993b; Gill et al., 1982).

The second class of methods are ahnost entirely applied to handle single-objective prob-

lems with the features (i), (ii), and (iv) ( see, for example, Sobieski, 1992; Wu and Azarm,

1992; Zhao and Azarm, 1993, where further references can be found), with the exception of

Haimes et al.(1990) method which is applicable to hierarchical multiobjective problems, and

that of Azarm and Eschenauer (1993) which does not handle the SAE as formulated here. In

majority of the methods in this class, the system analysis and/or optimization model can be

decomposed into a number of submodels (subsystems or subproblems). The decomposition

(which might be performed on the system analysis or optimization model or both) is called

hierarchic, if it has an overall tree-type structure with two or more levels of subsystems. In

hierarchic decomposition, horizontal interaction in between the subsystems located at the

same level is not permissible. On the other hand, the decomposition is called nonhierarchic,

if there is no restriction on the interaction which might exist in between the subsystems.

So far, none of the methods reported in the literature can simultaneously handle all of the

above-mentioned features which are becoming increasingly common in the design of complex

engineering systems. In an attempt towards removing this shortcoming, this paper presents

an extension of a recent work by Azarm and Eschenauer (1993) whereby a multiobjective

approach for reducing the number of variables and constraints is combined with the SAE

which might be hierarchically or nonhierarchically coupled.

The remaining sections of this paper are organized as follows. We present, in Section 2,

an overview of the definitions and formulation of the problem. This is followed by Section

3, whereby the solution approach is presented. The method is then demonstrated, as shown



in Section 4, via two examples: a simple explosiveactuated cylinder (to demonstratethe
solution steps)and a fairly complexdual-wheelexcavator.The paper is concludedin Section
5 with the final remarks. Parametersaladvariables for the formulation alld examples are

defined in the nomenclature of Section 8.

2 Formulation

i

l

i
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As it was stated in Azarm and Eschenauer (1993), the overall multiobjective optlmizatiol_

problem is converted into a _7ziT_max form in that the collective objective is to minimize the

maximum loss of all objectives (see also, Osyczka, 1984). He,lee, the overall multiobjective

optimization formulation is given as follows:

/(s)

s,t.: < 0 (1)

where the objective and inequality constraint functions, ] and .q components, are smooth

functions of design variables, 5. The vector of design variables, _, is partitioned into three

groups: a?, 3_,, and I7. _" represents an N-vector of primary variables, their impact on the

design optimization is assumed to beglobal (e.g., variables that cow,tribute to many design

parts, disciplines, or nonphysical entities): J_, represents an ,q'-vector of seco,zdar v variables,

their impact on the design is assumed to be local (e.g., variables that contribute to detailed

dimensions or specifications of design parts, disciplines, or nonpliysical entities). In general,

as will be observed in the solution steps (Section 3), the primary variables are included it_to

the solution process directly, while the secondary variables are considered indirectly (i.e., via

step-size variables). I5. represents a vector of state variables obtainable as a solution of a set

of simultaneous (coupled) equations which can be partitioned, for example, into Iy_', 9 b, f"*,

such that:

°) (2)

(3)

(4)

The above set of equations represents the SAE. Each equation, also referred to as Contribut-

ing Analysis (('A), may represent a particular engineering discipline or a distinct physical

part (a subsystem) of a system, or both (Sobieski, 1990). Note that the division of SAE

into GAs may: (i) correspond to physical boundaries present in the problem that suggest

its separation into smaller parts, or (ii) be purely formal as in dividing a set of equation, s

into several subsets. These two ways of the SAE partitioning are referred to as ptlysical and

nonphysical ill the paper.



As it was stated before, presumably tile system analysis is performed outside where the

ol)jective and constraint functions (optimization formulation) are evaluated. Furthermore,

it is assumed that in the optimization formulation, the number of variables and constraint

functions (and perhaps the number of objective flmctions as well) during the solution pro-

cess has to be reduced. The reduction in tile number of variables is achieved through tile

secondary variables, 1_,. This has recently been developed for a multiobjective case by

Azarm and gschenauer (1993). Briefly, it involves partitioning of secondary variables, X,,

into several groups: _',,, i = 1,..., I. Each _'_, represents a .5',-vector of secondary variables

in an optimization subsystem i (which might be an engineering discipline, a physical part,

or a nonphysical entity). Note that: ,5' = _I ,_=1 Si; the total number of secondary variables

is equal to the sum of the number of secondary variables in each optimization subsystem:

i = 1,..., I. The vector of secondary variables X,, is replaced by a scalar step-size variable

si as follows:

= g, (.5)

where eli (as given in Section 3) is a descent direction in the subspace of active constraints

which is obtained from the optimization subsystem post-optimality sensitivity analysis. In

general, the optimization subsystems (or system) can be different from tile analysis subsys-

tems (here we use tile terms: optimization subsystem and analysis subsystem to distinguish

them from each other).

In order to reduce tile number of constraints, the cumulative flmction (or tile KS function)

introduced by Kreissehneier and Steinhauser (1979), which was also used by Sobieski et al.

(1985), is utilized here. As an example, gk_ represents a cumulative fimction of gl,'", 9J:

gk_ = lln (_-_.. exp(pgj))pJ=, (6)

where p is a user controlled coefficient. Sobieski et a1.(1988) were first to develop a technique,

based on the KS function, to convert a multiobjective optimization problem into a single

objective form. The KS function can also be applied to convert a multiobjective optimization

problem formulated in a minmax form into a single objective form. Figure 1 shows an

example of this whereby fk, and gk, are the KS functions for the objectives and constraints,

respectively. Note that, as shown in the Figure l, depending on the value of p there

might be a gap in between the mininmm of fk, and the minmax(f_, f_, f3), points B and

A, respectively. These two points however will coincide when p ---+ oc. Also, note that the

choice of the KS function as a means to reduce the problem to a single objective form implies

that the objective that has the steepest slope after normalization controls the optimization.

Finally, the SAg can be approximated in the optimization formulation in which the

number of variables and constraints are reduced as well, i.e., the optimization problem of (1)
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Figure 1: KS Function for Objectives and Constraints

can be rewritten as follows (k and ,s are varied while Y" fixed):

(7)

where 1} E [f'_, Y:], Y represents a linear approximation of the }v which is computed by
C _C

tile SAE, Y'l and Y,, represent lower and upper move limits on the current value of ]7". The

advantage of (7), when compared with (1), is that the number of constraints is reduced to

one and the number of variables is reduced from (N+S+number of state variables) in (1) to

(N + l) in (7). As an example, in a large-scale structural optimization problem, the reduction

in the number of variables and constraints can (among other reasons) substantially reduce

the computer storage for an otherwise very large jacobian matrix needed by the optimizer.

Y.

!

3 Solution Steps

The solution steps are summarized as follows (see also the flow-chart in Figure 2):

• Step (0): Identify primary, secondary, step-size and state variables.

2 5:o, )_, -o= "_ = X_,, si = 0 and set k=0,

Initialize with

• Step (1): Solve system analysis equations for 1>, and perform system sensitivity analysis

(GSE as described by Sobieski, !990) to obtain 0_>/05 " and 0]>'/0fi:_.



identifyand initialize:
primaryvariables
secondaryvariables
step-size variables

(k=0)

outside_ I-

SYSTEMANALYSIS

E_ (CA)a = 0
(CA)b= 0

(CA)c = 0

no

(k=k+l)

updatesecondary
variables

t

inside loop

reduced-size formulation
systemsensitivity with primaryand step-size

analysis(GSE) variables

i - (linearizedsystemanalysis)

reduced-sizeformulation
L/,.__ _'_.. _ withprimaryvariables

(linearizedsystemanalysis)

Figure 2: Flow-Chart of the Solution Steps

• Step (2): if k=0 then solve (8) where _ is varied while _ is fixed:

min,nax f('k, Y)

,_.t.: 9k_(_,#)<_o

otherwise (i.e., if k >_ 1), solve (9) where Y_ and .s are varied while # fixed:

minmax f(k,,s,,'",,s,,#)

._.t.: gk,(k, sl,..., s_,_) < 0

where in (8) and (9), there are move limits on l_, i.e., _" E [15_, l_'_].

,, Step (3): As a part of post optimality sensitivity analysis of (8) or (9), compute:

(8)

(9)

(10)



and find:

,, = s, +._ d, (11)

' e• St p (4): Set k=k+l, repeat steps (1)-(3) ,anti] convergence is achieved.

Ill the above-mentioned solution steps, a5 and A are Lagrange multipliers corresponding to

tile objective and constraint functions of (8) or (9). Furthermore, Y is obtained as follows:

= + E{(o?/o_,)zx_,}+ _{(o?/o2s,)(o2,,/o._,)_x._,}
i i

(12)

where _'_ is the current value of _'. Also:

(0(] org_,)/a_)= (0(] org_,)/o_)loca1+ Z (a(] org_,)/a?')(a_'/o_)
i=a,b,c

(13)

(0(] or gk,)lOs,) = _ {(of/i/af(,)(o(] or gk_)/Of/i)}(O)(,/O.sl) (14)
i=a,b,c

The minimax problems of (8) and (9) are solved by the subroutine FSQP (Zhou and Tits,

1991). FSQP (Feasible Sequential Quadratic Programming) is a set of Fortran subroutines

which implements algorithms which are described and analyzed by Panier and Tits (1993),

Bonnans et al. (1992), and Zhou and Tits (1993a).

__=

4 Examples

Two examples are presented here to demonstrate the method developed ill the paper. Both

examples are selected from the literature where they are formulated as a single-objective

problem. They are revised here to form multiobjective examples.
: - . , .

4.1 Example 1: Explosive Actuated Cylinder

This example is constructed from a well-known single-objective optimization problem, a

minimum length design (f,) of an explosive actuated cylinder (Papalambros and Wilde,

1979). Tile constraints for this example express the specifications for: kinetic energy (gl),

wall stress (g.2), and geometry constraints (g3-gs). Its formulation is revised here by taking

out one of its constraints (piston force) in the original formulation and including it as an

_dditional objective (f2) in the problem. As shown below, both objectives liave been scaled

so that they are of the same order of magnitude:

mi,_m.x {f,,f_}
f, = (zl+ z._)/L,,L

6

L

_=

i



g2 :

g3 :

g4 :

gs :

f2 = [(lO00_r/4)z4z_]/Fm_

(W,,,,, (1 - 7))/[1000z4vT(v_ '-'_) -

v, = vc+ (,#4);,d

v2 = v_ + (rr/4)z2z_

_N/ar - 1 < 0

< = (0._- 0.,0.,+ 0.h'z_

0., -_._ + ;h/(d- 2_)

0"2 -- -- Z4

za/D,,,,_- 1 <_ 0

(z_ + z2)/L,,,_=- 1 < 0

z5 < za

z_>0 i=1,...,5

_'-'))]- I < 0

(15)

For convenience, the nomenclature for this example is given in the appendix (see also Pa-

t)alaml)ros and Wilde, 1979, for further details).

4.1.1 Solution

Following the solution steps in Section 3, we assume: k = (z,,z4) t, X, = (z.a,z3,zs) e, f/ =

(y,,yb)t = (v,,v.a) t. We then initialize with 2 ° = (0.4,0.34)t, ._o = (1'.2,0.82,0.67)' ', s°=0,

and k=0. Next, as in step (1) of the solution steps, we select and partition tile SAE into

two nonphysical analysis subsystems: subsystem a and subsys{em b (Figure 3 shows the

interaction between these two subsystems). We then form the global sensitivity equations

(Sobieski, 1990):

(1-Ov.d OVl

where:

ya 2 _ yb 2
=Vl=Vc+Tr/4 ZlZ5 =v2=vl+77/4 z2z 5

subsystem a subsystem b

. ................................ .. .................. ......................................................,

Figure 3: Analysis Subsystems for Example 1

--OVl/Ov.z)(OVl/OZk Off/Ozk

ff = v_ + (Tr/4)z,z_

k = 1,2,5 (16)

(17)



f and ,_

k
A
Zl

Z2

Z3

Z4

Z5

Test Cases

a b c d e

0.721 0.722 0.723 0.724' 0.724

0.721 0.722 0.723 0.724 0.724

0 0 0 0 0

1.44 1.44 1.44 1.44 1.45

i 1 0.97 0.99 0.89

23.4 23.4 23.04 23.04 22.5

0.166 0.166 0.167 0.167 0.169

Key:

a: original double-objective problem

b: original double-objective problem was

reduced to single-objective by KS function

c: original multi-constraint problem was

reduced to single-constraint by KS function

d: no. of variables and constraints are reduced

e: no. of variables and constraints are reduced

with linearization on gl

Table 1: Summary of Results for Example 1

]
a

7

fb = vl + Qr/4)z._z_ (18)

As an example, GSE for zs will be as foilows-

-11 ov /oz5 (19)

With k=0 at step (2), we formulate (8) with 0=150, and solve for updated primary variables:

k=(0.%,2.3) t. We also obtain (as a by-product of FSQP): (w_,_.2)= (0,1) and A=0.2. Next,

we go to step (3), whereby (10) we compute d_, d.2, d3 for XI, X_, X_, respectively. We then

express the secondary variables via (11) as a function of the step-size variable s (new values

for the step-size .s and primary variables J? are then obtained via (9) for k >_ 1). We now

go to step (4) and set k=l and repeat steps (1)-(3). This iterative process continues until

there is no further improvement in the value of objective functions. A summary of results

are given in Table 1. As shown in the table, the results from the solution steps (test case e)

compare well with those obtained when the original problem is solved (test case a), or when

the number of objectives are reduced to one (test case b), or when the number of constraints

are reduced to one (test case c), or when the number of variables ( including the step-size

variable s) are reduced to three and the number of constraints to one (test case d).

8



4.2 Example 2: Dual-Wheel Excavator

This example (Figures 4 and 5) is constructed from a single-objective optimization problem

(Wilson, 1992). It involves a mininmm weight design of a 120-inch threaded hub-and-shaft

assembly for a dual-wheel excavator. There are 9 variables and 25 constraints in this example.

The constraints in the example express specifications on: hub stress (gl, 92), stress on shaft at

various critical positions (g3-gls), and other practical constraints (glg-g2s). Here, the original

single-objective problem (sum of the weights for the hubs and shaft) has been converted into

two objectives: weight of the shaft (./'1), weight of the hub (f2), with both objectives scaled

to be of the same order of magnitude:

77_i7_77_ax

s.t. :

9_(zl, z_) :

g_(_, z_) :

9._(z3, zT, zs) :

94(z3, zT, zs) :

g_(zl, _) :

.q6(zl, zT) :

gT(zl, z_) :

98(_1, ":) :

gg(zl) :

glo(zl) :

j_(zl, _s, z_) :

gl'_(zl, zs, z6) :

jl:3(z_, zs) :

9_4(zl, zs) :

ms(z1, z_) :

9_6(zl, _'2) :

mXzl, zs, zg) :

Jls(zl, z_, zg) :

{fl,A}

f_ = (p,:/4){Z_z_ + z,__.d + 2z_r& + .+,_

f2 = (ps_r/4){[z,((zl + a) 2 - z_)] + [(z, + B2)/2(D_l

2
-(z, + a)_)] + [(B1 + B2)/2(Dlo - D_)}/5000

a_/_r v + _r,,,h/o'u - 1/f_ < 0

g.h/a. + cr,,,h/cr_. - 1/L <_ 0

_/_ + .,.d._ - 1/L <_o

a._/ae + a,,,_lo',,t - 1/f_ <_ 0

oo_/_._+ _.,,,_/_ - 1/f. <_o

_._,,/_._+ _.,._/_.,. - 1/L <_o

_._,_,_/_ + _.,,._,j_ - 1/L <_o

o,_,_._/o'_ + o',,,,h_/o',.,,- 1/f_ <_ 0

_.o_,_,/_+ _,._.J_- 1/L < o

_._.,/o_ + _,._,h/_.., - I/L <_o

_,,_/_._ + _.,,,_,,_/o_,- 1/L < o

a,,,../o-_ + o'm_,./o, v - 1/f_ < 0

o-._,alo'_ + _,,,_,.Io',_, - i/f, <_0

o'.r_v/o_ + o',,,,._,,/o'_ - 1/f. < 0

_,_,/_ + _,,,,_,,/_,_,- _/L <_o

_,_./_,_+ _,,,,./_ - 1/L _<o

_,_./_,_+ _,,../_,_, - I/L <_o

(2o)



ucketwheel

hub

seals

g$

sprocket

Figure 4: A Dual-Wheel Excavator
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_z6 _s _zl ¢_2_DB _4 _'3

.11..... z'D.hrea,!, l 
Figure 5: Shaft of the Dual-Wheel Excavator

9_(=_):

92o(z2,z3) :

9_(=_, =_) :

922(z_,z4) :

92:3(z5,z6) :

924(zl, z2) :

925(zl,z_) :

0.127Ns - z8 _< 0

z2 - 0.95DB < 0

0.8De - z2 _< 0

Shtdr + De�2 - z4/2 _ 0

z5 + 0.0165 - z6 _< 0

Zl + 0.0267 - z2 _< 0

0.25zl - z5 _< 0

For convenience, the nomenclature for this example is given in the appendix (see also Wilson,

1992, for further details).

4.2.1 Solution

Following the solution steps in Section 3, we assume: $=(z,, zT) t, 2_,=(z2, z3, z4, z8) t,

)(_=(zs, z6, z9) t. Note that the secondary variables are grouped (optimization subsystems)

according to the physical makeup of the excavator; 3_ represents shaft dimensions in be-

tween the two hubs while X_2 represents those outside the two hubs (Figures 4 and 5).

State variables 12, or the SAE (Figure 6), for this example are established so that they Olfly

contribute to tile hub stress constraints (gl and g2). Tile hub is modeled (Wilson, 1992) as a

subsystem a k

/ W'Qr' Mr'Mro "_ ,.,

su, y ,.mb]: :i I
A,B,C,D "

Figure 6: Analysis Subsystems for Exalnple 2

11



ring plate of linearly varying thicknesssubject to concentratedtransverseload and bending
momentat its outer edge. The SAE is partitioned into three nonphysicalanalysissubsys-
tems: subsystema (]7"), subsystemb (_,b), and subsystemc (17_). Note tlmt, the analysis

subsystems as shown ill the Figure 6 are different from the optimization subsystems. The

SAE for subsystem a represents:

{5 = ,,subsystema: = A= (21)

where n is the hub's thickness constant, and A is an eigenvalue computed iteratively (as shown

by an arched arrow on subsystem a in Figure 6) by tile following characteristic equation.

The characteristic equation is obtained from partial differential equations established for

the hub based on the excavation loading conditions and using small-deflec.tion plate theory

(Conway, 1958; Wilson, 1992):

X4 - 2A3(n 4 2)-I- A2[(n + 2) 2 + n(1 -v) - 2m 2]

-t-A(n -1-2)[2m 2 - n(1 - v)] + m2[m 2 - 1 - (3--t- un)(n + 1)1 = 0
(22)

l
|

J

is obtained for each m (only 11 terms are considered here, i.e., m=0 to m=10) of the de-

flection (w) equation in subsystem b. As shown below, subsystem b computes the deflection

and loads (shear force, Qr, and moments, Mr, Ms, M_o) on the hub:

oo ,_t

Y_ = w = _,,_=o(A' + B, ,x' + C, .x3 + D, "x') cos(toO)

Y:- Q,. = f_(w,z,,zr, n)

subsystem b: Y_ M_ = f_(w, zl,zr, n) (23)

Y4b = Me = f_(w, za,zr, n)

rt = M_o = fb4(w,z,,zr, n)

where:_: :

Q,. = D(,')[O/O,']((O'2w/O, "2) + (1/r)(Ow/Or) + (1/r'2)(O'2w/O0'2))

M, = -D(,')[(O'2w/O, "'_) + u((1/,')(Ow/Or) -t- (1/,"2)(02w/00"2))]

Me -'--D(r)[(1/,')(Ow/Or) + (1/,"_)(02w/O '2) + u(O'2w/O,"2)]

M_0-- -(1- v)D(,')[(1/,')(O'2w/O,'OO)]

(24)

and D(r), the flexural rigidity, is a function of hub radius, r, and 0 is an angular coordinate

on the hub.

Finally, subsystem c represents the boundary conditions which can be used to find

A, B, C, D coefficients for tile above-mentioned deflection (w), Wilson (1992):

Y_=A; Y2=B; _=C; Y4¢=D

w = f[(A,B,C,D,A)=0
subsystem c: Ow/O; = f_(A,B,C,D,A) = 0

E(forces) = f:_(A,B,C,D,A,n,Q_,M_o)=0

E(moments) = f,_(m, B, C, D, A, n, M_) = 0

Initially, we assumed: k=(12.1, 8.9) t, )(,,=

(25)

(14.4, 16.6, 19.1) e, X, 2 = (9.2, 12, 1.8) t, .s,--0,

12



f and

fl
A
Zl

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Test Cases

a b c d e

0.80 0.79 0.80 0.81 0.81

0.80 0.80 0.80 0.81 0.81

12.8 12.7 12.7 11.9 12

14.3 14.4 14.3 13.6 13.9

15.2 15.2 15.4 15 14.8

17.6 17.5 17.8 18.6 18.2

7.5 6.9 7.7 9 9

10 8.9 9. 7 11.8 11.8

5.9 5.9 5.9 6 6

10 10 10 12 11.5

1.3 1.5 1.4 1.2 1.2

Key:

a: original double-objective problem

b: original double-objective problem was

reduced to single-objectlve by KS function

c: original multi-constraint problem was

reduced to single-constraint by KS function

d: no. of variables and constraints are reduced

e: no. of variables and constraints are reduced

with linearization on gl and g2

Table 2: Summary of Results for Example 2

s2=0, and k=0. We then followed the solution steps in Section 3 to obtain the results which

are summarized in Table 2. Finally, it should be stated that the minimax solution reported

here (for case a of Table 2, the total hub-and-shaft assembly weight is 10,640 lb) is different

from that reported by Wilson (1992) in which the problem is formulated in a single objective

form (sum of the weights for the hubs and shaft was 10,211 lb). These two solutions are

essentially two different Pareto solutions for the example as formulated here (Osyczka, 1984).

5 Concluding Remarks

In this paper we have discussed a method for combining a reduction technique with system

analysis equations for multiobjective optimization problems. The main characteristics of the

method presented are that: (i) the number of variables and constraints can be reduced, (ii)

the SAE, which might be costly aim hierarchically or nonhierarchically decomposed, is per-

formed outside the optimization loop, and (iii) it is applicable to multiobjective optimization

problems.

The method has been demonstrated by two examples: (i) a simple explosive actuated
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cylinder, and (ii) a fairly complexdual-wheelexcavator. It hasbeenshown that, for both

examples,when the reduction measures(test cases (b)-(e) for both examples) are applied

they can usually obtain a solution fairly close to that of the original problem (test case

(a)). The small difference in the solution could be eliminated, for example, by increasing the

nmnber of variables, constraints, etc., to resolve a lack of sufficient degrees-of-freedom.
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8 Nomenclature

Fornmlation:

(CA) _ = Contributing analysis equations in analysis subsystem a

d_ = Descent direction in optimization subsystem i

f = Vector of objective functions

f_,_ = Cumulative objective function

.q = Vector of inequality constraint functions

.qk_ = Cumulative constraint function

I = Number of Optimization subsystems
k = Iteration counter

N = Number of elements in tildex

si = Step-size variable in optilnization subsystem i

,5' = Number of elements in 3(_

_L,., - Number of elements in )(_,

2 = Vector of primary variables

X_ = Vector of secondary variables

)(_, = Vector of secondary variables in optimization subsystem i

fr = Vector of state variables

12_ = Vector of state variables in analysis subsystem a

Yt, Y,, = Lower and upper move limits on the current value of i5"

= Linear approximation to f"

= Vector of overall design variables

A = Lagrange multipliers for constraint functions
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Example I:

N =

Vl, Y2

Vc --

Wmin

21 --_

z2 --

z4

z5
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&y ----

_rl, 0"2 --

Example 2:

(2

B1, B._

Dl0

Dzl

Ds

A
ms
,_.'hldr

Zi

ZB
Z¢

ZsH

Zsp

I/

ps

Crab

O'a,T_d

O'aent

tTaea

crab

O'arev

O'athd

O'au

= User defined coefficient for KS function

= Lagrange multipliers for objective functions

m

Maximum allowable cylinder outside diameter,

Maximum piston force, 700 lb

Maximum cyliuder total length, 2 in

Safety factor, 3

Initial, final volume of combustion, in '_

Fixed chamber volmne, 0.084 in a

Minimum kinetic energy, 600 Ib-in

Unswept cylinder length, in

Working stroke of piston, in

Outside diameter of cylinder, in

hfitial pressure of combustion, ksi

Piston diameter, in

Ratio of specific heats, 1.2

Equivalent stress, ksi

Yield strength, 125 ksi

Principal stress, ksi

1 in

Diameter constant for the hub, in

HUg dimensions, in

Hub dimension, in

Hub dimension, in

See Figure 5, in

Safety factor

Number of seals

Radial height of the shoulder at the bearings, in

Shaft dimension (i = 1,-.. ,9), see Figure 5, in

See Figure 5, in

= See Figure 5, in

= See Figure 5, in

= See Figure 5, in

= Eigenvalue

= Poisson's ratio

= Density, lbm/in a

= Alternating

= Alternating

= Alternating

= Alternating

= Alternating

= Alternating

= Alternating

= Alternating

stress on shaft at bearings, ksi

compressive stress on shMt at end connections, ksi

tensile stress on shaft at end connections, ksi

shear stress on shMt at end connections, ksi

stress on hub, ksi

stress on shaft due to reverse loading, ksi

stress on ACME threads, ksi

stress on shaft at ACME thread undercut, ksi
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O'axth

(:r e

O'mb

O'mend

O'm e n t

0+7_ h

O'mthd

O'mu

O'mxth

Out

Ory

= Alternating shear stress on ACME threads, ksi

= Endurance limit, ksi

= Mean stress on shaft at bearings, ksi

= Mean compressive stress otl shaft at end connections, ksi

= Mean tensile stress on shMt at end connections, ksl

= Mean shear stress on shaft at end connections, ksi

= Mean stress on hub, ksi

= Mean stress on shaft due to reverse loading, ksi

= Mean stress on ACME threads, ksi

= Mean stress on shaft at ACME thread undercut, ksi

= Mean shear stress on AC'ME threads, ksi

= Ultimate tensile strength, ksi

= Yield strength, ksi
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