36 research outputs found

    Abdominal pain without bruising or sign of trauma: pancreatic injuries in children is difficult to predict

    Get PDF
    Pancreatic injuries due to trauma in children are rare. An early diagnosis is difficult as the signs and symptoms are insidious, but delays in diagnosis can lead to significant complications. We report a case of a child who visited the emergency department with aggravating abdominal pain. The physicians first diagnosed the abdominal pain as being caused by a disease in the emergency department, but the patient was subsequently diagnosed with pancreatic injury. Clinicians should be aware of a possible trauma in children who complain of vague abdominal pain even in the absence of corresponding history

    Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: Improvements using Radiomics

    Get PDF
    Multimodality imaging measurements of treatment response are critical for clinical practice, oncology trials, and the evaluation of new treatment modalities. The current standard for determining treatment response in non-small cell lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular targeted agents and immunotherapies often cause morphological change without reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by conventional methods. Radiomics is the study of cancer imaging features that are extracted using machine learning and other semantic features. This method can provide comprehensive information on tumor phenotypes and can be used to assess therapeutic response in this new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in radiomics features, shows potential in gauging treatment response in NSCLC. It is well known that quantitative measurement methods may be subject to substantial variability due to differences in technical factors and require standardization. In this review, we describe measurement variability in the evaluation of NSCLC and the emerging role of radiomics. © 2019 Wolters Kluwer Health, Inc. All rights reserved

    Non-Abelian Chern-Simons Particles and their Quantization

    Full text link
    A many--body Schr\"odinger equation for non--Abelian Chern--Simons particles is obtained from both point--particle and field--theoretic pictures. We present a particle Lagrangian and a field theoretic Lagrange density, and discuss their properties. Both are quantized by the symplectic method of Hamiltonian reduction. An NN--body Schr\"odinger equation for the particles is obtained from both starting points. It is shown that the resulting interaction between particles can be replaced by non--trivial boundary conditions. Also, the equation is compared with the one given in the literature.Comment: 18 pages, MIT preprint CTP # 227

    Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Get PDF
    BACKGROUND. Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. METHODOLOGY/PRINCIPAL FINDINGS. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. CONCLUSIONS/SIGNIFICANCE. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).National Institute on Drug Abuse (14118, 026002, 026104, DABK39-03-0098, DABK39-03-C-0098); The MGH Phenotype Genotype Project in Addiction and Mood Disorder from the Office of National Drug Control Policy - Counterdrug Technology Assessment Center; MGH Department of Radiology; the National Center for Research Resources (P41RR14075); National Institute of Neurological Disorders and Stroke (34189, 05236

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Sensitivity Improvement of Urchin-Like ZnO Nanostructures Using Two-Dimensional Electron Gas in MgZnO/ZnO

    No full text
    This paper introduces a strategy for improving the sensitivity of a gas sensor to NO2 gas. The gas sensor was fabricated using urchin-like ZnO nanostructures grown on MgO particles via vapor-phase growth and decorated with MgZnO nanoparticles via a sol-gel process. The urchin-like ZnO gas sensor decorated with MgZnO showed higher sensitivity to NO2 gas than a pristine urchin-like ZnO gas sensor. When ZnO and MgZnO form a heterojunction, a two-dimensional electron gas is generated. This improves the performance of the fabricated gas sensor. The growth morphology, atomic composition, and phase structure were confirmed through field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively

    Improved Performance and Bias Stability of Al2O3/IZO Thin-Film Transistors with Vertical Diffusion

    No full text
    Several studies on amorphous oxide semiconductor thin-film transistors (TFTs) applicable to next-generation display devices have been conducted. To improve the poor switching characteristics and gate bias stability of co-sputtered aluminum–indium–zinc oxide (AIZO) TFTs, we fabricate Al2O3/indium–zinc oxide (IZO) dual-active-layer TFTs. By varying the Al2O3 target power and oxygen partial pressure in the chamber during Al2O3 back-channel deposition, we optimize the electrical characteristics and gate bias stability of the Al2O3/IZO TFTs. The Al2O3/IZO TFTs, which are fabricated under 50 W Al2O3 target power and 13% oxygen partial pressure conditions, exhibit a high electron mobility of 23.34 cm2/V·s, a low threshold voltage of 0.96 V, an improved on–off current ratio of 6.8 × 107, and a subthreshold swing of 0.61 V/dec. Moreover, by increasing the oxygen partial pressure in the chamber, the positive and negative bias stress values improve to +0.32 V and −2.08 V, respectively. X-ray photoelectron spectroscopy is performed to reveal the cause of these improvements

    Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease

    Get PDF
    The type II CRISPR-associated protein Cas9 recognizes and cleaves target DNA with the help of two guide RNAs (gRNAs; tracrRNA and crRNA). However, the detailed mechanisms and kinetics of these gRNAs in the Cas9 nuclease activity are unclear. Here, we investigate the structural roles of gRNAs in the CRISPR-Cas9 system by single-molecule spectroscopy and reveal a new conformation of inactive Cas9 that is thermodynamically more preferable than active apo-Cas9. We find that tracrRNA prevents Cas9 from changing into the inactive form and leads to the Cas9:gRNA complex. For the Cas9:gRNA complex, we identify sub-conformations of the RNA-DNA heteroduplex during R-loop expansion. Our single-molecule study indicates that the kinetics of the sub-conformations is controlled by the complementarity between crRNA and target DNA. We conclude that both tracrRNA and crRNA regulate the conformations and kinetics of the Cas9 complex, which are crucial in the DNA cleavage activity of the CRISPR-Cas9 system. © The Author(s) 2016118171sciescopu
    corecore