24 research outputs found
Joint Attention and Brain Functional Connectivity in Infants and Toddlers
Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development
Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization
Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region
[1] Anthropogenic increases in atmospheric carbon dioxide (CO<sub>2</sub>) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO<sub>2</sub>-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO<sub>2</sub> concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO<sub>2</sub> concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO<sub>2</sub> on vegetation were tested in combination with the indirect effects of CO<sub>2</sub>-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO<sub>2</sub> levels
Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization