278 research outputs found

    CW high intensity non-scaling FFAG proton drivers

    Full text link
    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, US

    The NuMAX Long Baseline Neutrino Factory Concept

    Full text link
    A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider if and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.Comment: JINST Special Issue on Muon Accelerators. arXiv admin note: text overlap with arXiv:1308.0494, arXiv:1502.0164

    The Ionization Profile Monitors in the Recycler Ring

    Full text link
    The ionization profile monitors (IPMs) are used to measure the beam size in synchrotrons. Both the Fermilab Recycler and Main Injector (MI) machines have IPMs. However, they were not well understood enough to provide confidence in their measurements. Accurately measuring beam size through the IPMs was crucial to recognize the loss mechanisms for accelerators and to keep the beam loss to a minimum. Thus, performing measurements with different parameters using the IPMs led to a better analysis on how changes in conditions affect the beam size. The IPM measurements are compared with that of multi-wires in the upstream transfer line after applying corrections. The results were compared with other diagnostics and the change in the beam size for different parameters are presented in this paper.Comment: 14th International Particle Accelerator Conference (IPAC'23

    NuMI Beam Monitoring Simulation and Data Analysis Status and Progress

    Get PDF
    With the Main Injector Neutrino Oscillation Search (MINOS) experiment decommissioned, muon and hadron monitors became an important diagnostic tool for the NuMI Off-axis v Appearance (NOvA) experiment at Fermilab to monitor the Neutrinos at the Main Injector (NuMI) beam. The goal of this study is to maintain the quality of the monitor signals and to establish correlations with the neutrino beam profile. And we carry out a systematic study of the response of the muon monitors to the changes in the parameters of the proton beam and lattice parameters. We report here on the progress of the beam data analysis and comparison with the simulation results
    • …
    corecore