915 research outputs found

    Spectral variability in faint high frequency peakers

    Full text link
    We present the analysis of simultaneous multi-frequency Very Large Array (VLA) observations of 57 out of 61 sources from the ``faint'' high frequency peaker (HFP) sample carried out in various epochs. Sloan Digital Sky Survey (SDSS) data have been used to identify the optical counterpart of each radio source. From the analysis of the multi-epoch spectra we find that 24 sources do not show evidence of spectral variability, while 12 objects do not possess a peaked spectrum anymore at least in one of the observing epochs. Among the remaining 21 sources showing some degree of variability, we find that in 8 objects the spectral properties change consistently with the expectation for a radio source undergoing adiabatic expansion. The comparison between the variability and the optical identification suggests that the majority of radio sources hosted in galaxies likely represent the young radio source population, whereas the majority of those associated with quasars are part of a different population similar to flat-spectrum objects, which possess peaked spectra during short intervals of their life, as found in other samples of high-frequency peaking objects. The analysis of the optical images from the SDSS points out the presence of companions around 6 HFP hosted in galaxies, suggesting that young radio sources resides in groups.Comment: 16 pages, 5 figures; accepted for publication in MNRA

    Optical spectroscopy of faint gigahertz peaked spectrum sources

    Get PDF
    We present spectroscopic observations of a sample of faint Gigahertz Peaked Spectrum (GPS) radio sources drawn from the Westerbork Northern Sky Survey (WENSS). Redshifts have been determined for 19 (40%) of the objects. The optical spectra of the GPS sources identified with low redshift galaxies show deep stellar absorption features. This confirms previous suggestions that their optical light is not significantly contaminated by AGN-related emission, but is dominated by a population of old (>9 Gyr) and metal-rich (>0.2 [Fe/H]) stars, justifying the use of these (probably) young radio sources as probes of galaxy evolution. The optical spectra of GPS sources identified with quasars are indistinguishable from those of flat spectrum quasars, and clearly different from the spectra of Compact Steep Spectrum (CSS) quasars. The redshift distribution of the GPS quasars in our radio-faint sample is comparable to that of the bright samples presented in the literature, peaking at z ~ 2-3. It is unlikely that a significant population of low redshift GPS quasars is missed due to selection effects in our sample. We therefore claim that there is a genuine difference between the redshift distributions of GPS galaxies and quasars, which, because it is present in both the radio-faint and bright samples, can not be due to a redshift-luminosity degeneracy. It is therefore unlikely that the GPS quasars and galaxies are unified by orientation, unless the quasar opening angle is a strong function of redshift. We suggest that the GPS quasars and galaxies are unrelated populations and just happen to have identical observed radio-spectral properties, and hypothesise that GPS quasars are a sub-class of flat spectrum quasars.Comment: LaTeX, 13 pages. Accepted by MNRAS. For related papers see http://www.ast.cam.ac.uk/~snelle

    A Parkes half-Jansky sample of GPS galaxies

    Get PDF
    This paper describes the selection of a new southern/equatorial sample of Gigahertz Peaked Spectrum (GPS) radio galaxies, and subsequent optical CCD imaging and spectroscopic observations using the ESO 3.6m telescope. The sample consists of 49 sources with -4020 degrees, and S(2.7GHz)>0.5 Jy, selected from the Parkes PKSCAT90 survey. About 80% of the sources are optically identified, and about half of the identifications have available redshifts. The R-band Hubble diagram and evolution of the host galaxies of GPS sources are reviewed.Comment: Latex, 12 pages, 8 figures, accepted for publication in MNRA

    Molecule mapping of HR8799b using OSIRIS on Keck: Strong detection of water and carbon monoxide, but no methane

    Full text link
    Context. In 2015, Barman et al. (ApJ, 804, 61) presented detections of absorption from water, carbon monoxide, and methane in the atmosphere of the directly imaged exoplanet HR8799b using integral field spectroscopy (IFS) with OSIRIS on the Keck II telescope. We recently devised a new method to analyse IFU data, called molecule mapping, searching for high-frequency signatures of particular molecules in an IFU data cube. Aims. The aim of this paper is to use the molecule mapping technique to search for the previously detected spectral signatures in HR8799b using the same data, allowing a comparison of molecule mapping with previous methods. Methods. The medium-resolution H- and K-band pipeline-reduced archival data were retrieved from the Keck archive facility. Telluric and stellar lines were removed from each spectrum in the data cube, after which the residuals were cross-correlated with model spectra of carbon monoxide, water, and methane. Results. Both carbon monoxide and water are clearly detected at high signal-to-noise, however, methane is not retrieved. Conclusions. Molecule mapping works very well on the OSIRIS data of exoplanet HR8799b. However, it is not evident why methane is detected in the original analysis, but not with the molecule mapping technique. Possible causes could be the presence of telluric residuals, different spectral filtering techniques, or the use of different methane models. We do note that in the original analysis methane was only detected in the K-band, while the H-band methane signal could be expected to be comparably strong. More sensitive observations with the JWST will be capable of confirming or disproving the presence of methane in this planet at high confidence.Comment: 5 pages, 5 figures and 2 tables, accepted by A&

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    Massive galaxies with very young AGN

    Full text link
    Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources and live in massive ellipticals. GPS sources are vital for studying the early evolution of radio-loud AGN, the trigger of their nuclear activity, and the importance of feedback in galaxy evolution. We study the Parkes half-Jansky sample of GPS radio galaxies of which now all host galaxies have been identified and 80% has their redshifts determined (0.122 < z < 1.539). Analysis of the absolute magnitudes of the GPS host galaxies show that at z > 1 they are on average a magnitude fainter than classical 3C radio galaxies. This suggests that the AGN in young radio galaxies have not yet much influenced the overall properties of the host galaxy. However their restframe UV luminosities indicate that there is a low level of excess as compared to passive evolution models.Comment: To appear in the proceedings of "Formation and Evolution of Galaxy Bulges", IAUS 245; M. Bureau, E. Athanassoula & B. Barbuy, ed

    Chromatic transit light curves of disintegrating rocky planets

    Get PDF
    Context. Kepler observations have revealed a class of short period exoplanets, of which Kepler-1520 b is the prototype, which have comet-like dust tails thought to be the result of small, rocky planets losing mass. The shape and chromaticity of the transits constrain the properties of the dust particles originating from the planet's surface, offering a unique opportunity to probe the composition and geophysics of rocky exoplanets. Aims. We aim to approximate the average Kepler long-cadence light curve of Kepler-1520 b and investigate how the optical thickness and transit cross-section of a general dust tail can affect the observed wavelength dependence and depth of transit light curves. Methods. We developed a new 3D model that ejects sublimating particles from the planet surface to build up a dust tail, assuming it to be optically thin, and used 3D radiative transfer computations that fully treat scattering using the distribution of hollow spheres (DHS) method, to generate transit light curves between 0.45 and 2.5 μ\mum. Results. We show that the transit depth is wavelength independent for optically thick tails, potentially explaining why only some observations indicate a wavelength dependence. From the 3D nature of our simulated tails, we show that their transit cross-sections are related to the component of particle ejection velocity perpendicular to the planet's orbital plane and use this to derive a minimum ejection velocity of 1.2 kms1^{-1}. To fit the average transit depth of Kepler-1520 b of 0.87%, we require a high dust mas-loss rate of 7 - 80 M_\oplus Gyr1^{-1} which implies planet lifetimes that may be inconsistent with the observed sample. Therefore, these mass-loss rates should be considered to be upper limits.Comment: 22 pages, 22 figures, accepted for publication in A&

    The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b

    Get PDF
    In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and the cadence of the observations, they were performed in staring mode. We collected a total of 5100 and 6900 frames for the first and the second night respectively, both with an average cadence of 3.3 seconds. On the second night the eclipse is detected at the 12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of the absorbed stellar light. For the other night the short out-of-eclipse baseline prevents good corrections for the stellar pulsations and systematic effects, which makes this dataset unreliable for eclipse depth measurements. This demonstrates the need of getting a sufficient out-of-eclipse baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Exoplanets transmission spectroscopy: accounting for eccentricity and longitude of periastron. Superwinds in the upper atmosphere of HD209458b?

    Full text link
    Context: Several studies have so far placed useful constraints on planetary atmospheric properties using transmission spectrsocopy, and in the case of HD209458b even the radial velocity of the planet during the transit event has been reconstructed opening a new range of possibilities. AIMS. In this contribution we highlight the importance to account for the orbital eccentricity and longitude of periastron of the planetary orbit to accurately interpret the measured planetary radial velocity during the transit. Methods: We calculate the radial velocity of a transiting planet in an eccentric orbit. Given the larger orbital speed of planets with respect to their stellar companions even small eccentricities can result in detectable blue or redshift radial velocity offsets during the transit with respect to the systemic velocity, the exact value depending also on the longitude of the periastron of the planetary orbit. For an hot-jupiter planet, an eccentricity of only e=0.01 can produce a radial velocity offset of the order of the km/s. Conclusions: We propose an alternative interpretation of the recently claimed radial velocity blueshift (~2 km/s) of the planetary spectral lines of HD209458b which implies that the orbit of this system is not exactly circular. In this case, the longitude of the periastron of the stellar orbit is most likely confined in the first quadrant (and that one of the planet in the third quadrant). We highlight that transmission spectroscopy allows not only to study the compositional properties of planetary atmospheres, but also to refine their orbital parameters and that any conclusion regarding the presence of windflows on planetary surfaces coming from transmission spectroscopy measurements requires precise known orbital parameters from RV.Comment: Accepted for publication in A&A Letter
    corecore