Context. In 2015, Barman et al. (ApJ, 804, 61) presented detections of
absorption from water, carbon monoxide, and methane in the atmosphere of the
directly imaged exoplanet HR8799b using integral field spectroscopy (IFS) with
OSIRIS on the Keck II telescope. We recently devised a new method to analyse
IFU data, called molecule mapping, searching for high-frequency signatures of
particular molecules in an IFU data cube.
Aims. The aim of this paper is to use the molecule mapping technique to
search for the previously detected spectral signatures in HR8799b using the
same data, allowing a comparison of molecule mapping with previous methods.
Methods. The medium-resolution H- and K-band pipeline-reduced archival data
were retrieved from the Keck archive facility. Telluric and stellar lines were
removed from each spectrum in the data cube, after which the residuals were
cross-correlated with model spectra of carbon monoxide, water, and methane.
Results. Both carbon monoxide and water are clearly detected at high
signal-to-noise, however, methane is not retrieved.
Conclusions. Molecule mapping works very well on the OSIRIS data of exoplanet
HR8799b. However, it is not evident why methane is detected in the original
analysis, but not with the molecule mapping technique. Possible causes could be
the presence of telluric residuals, different spectral filtering techniques, or
the use of different methane models. We do note that in the original analysis
methane was only detected in the K-band, while the H-band methane signal could
be expected to be comparably strong. More sensitive observations with the JWST
will be capable of confirming or disproving the presence of methane in this
planet at high confidence.Comment: 5 pages, 5 figures and 2 tables, accepted by A&