51 research outputs found
Evaluation and validation of detailed and simplified models of the uncertainty of unified pHabsH2O measurements in aqueous solutions
Highlights
• First detailed evaluation of the uncertainty of pHabsH2O measurements.
• Bottom-up uncertainty evaluations proven valid for 95% confidence.
• Monte Carlo Simulation of pHabsH2O measurement ladder with least-squares minimisation.
• Described simplified and detailed bottom-up uncertainty evaluations are equivalent.
• Measurements from 2 to 10 pHabsH2O with a 95% expanded uncertainty of 0.26–0.51.The use of the unified pH concept, pHabsH2O, applicable to aqueous and non-aqueous solutions, which allows interpreting and comparison of the acidity of different types of solutions, requires reliable and objective determination. The pHabsH2O can be determined by a single differential potentiometry measurement referenced to an aqueous reference buffer or by a ladder of differential potentiometric measurements that allows minimisation of inconsistencies of various determinations. This work describes and assesses bottom-up evaluations of the uncertainty of these measurements, where uncertainty components are combined by the Monte Carlo Method (MCM) or Taylor Series Approximation (TSM). The MCM allows a detailed simulation of the measurements, including an iterative process involving in minimising ladder deviations. On the other hand, the TSM requires the approximate determination of minimisation uncertainty. The uncertainty evaluation was successfully applied to measuring aqueous buffers with pH of 2.00, 4.00, 7.00, and 10.00, with a standard uncertainty of 0.01. The reference and estimated values from both approaches are metrologically compatible for a 95% confidence level even when a negligible contribution of liquid junction potential uncertainty is assumed. The MCM estimated pH values with an expanded uncertainty, for the 95% confidence level, between 0.26 and 0.51, depending on the pH value and ladder inconsistencies. The minimisation uncertainty is negligible or responsible for up to 87% of the measurement uncertainty. The TSM quantified measurement uncertainties on average only 0.05 units larger than the MCM estimated ones. Additional experimental tests should be performed to test these uncertainty models for analysis performed in other laboratories and on non-aqueous solutions
The Milky Way Tomography With SDSS. III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
The Milky Way Tomography with SDSS: III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence
stars with r<20 and proper-motion measurements derived from SDSS and POSS
astrometry, including ~170,000 stars with radial-velocity measurements from the
SDSS spectroscopic survey. Distances to stars are determined using a
photometric parallax relation, covering a distance range from ~100 pc to 10 kpc
over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find
that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the
rotational velocity for disk stars smoothly decreases, and all three components
of the velocity dispersion increase, with distance from the Galactic plane. In
contrast, the velocity ellipsoid for halo stars is aligned with a spherical
coordinate system and appears to be spatially invariant within the probed
volume. The velocity distribution of nearby ( kpc) K/M stars is complex,
and cannot be described by a standard Schwarzschild ellipsoid. For stars in a
distance-limited subsample of stars (<100 pc), we detect a multimodal velocity
distribution consistent with that seen by HIPPARCOS. This strong
non-Gaussianity significantly affects the measurements of the velocity
ellipsoid tilt and vertex deviation when using the Schwarzschild approximation.
We develop and test a simple descriptive model for the overall kinematic
behavior that captures these features over most of the probed volume, and can
be used to search for substructure in kinematic and metallicity space. We use
this model to predict further improvements in kinematic mapping of the Galaxy
expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap
Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release
The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained
five-band optical-wavelength imaging near the Galactic plane outside of the
nominal survey boundaries. These additional data were obtained during
commissioning and subsequent testing of the SDSS observing system, and they
provide unique wide-area imaging data in regions of high obscuration and star
formation, including numerous young stellar objects, Herbig-Haro objects and
young star clusters. Because these data are outside the Survey regions in the
Galactic caps, they are not part of the standard SDSS data releases. This paper
presents imaging data for 832 square degrees of sky (including repeats), in the
star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are
now released to the public, with the remainder to follow at the time of SDSS
Data Release 4. The public data in Orion include the star-forming region NGC
2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in
press, see http://photo.astro.princeton.edu/oriondatarelease for data and
paper with all figure
The Fifth Data Release of the Sloan Digital Sky Survey
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky
Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and
represents the completion of the SDSS-I project (whose successor, SDSS-II will
continue through mid-2008). It includes five-band photometric data for 217
million objects selected over 8000 square degrees, and 1,048,960 spectra of
galaxies, quasars, and stars selected from 5713 square degrees of that imaging
data. These numbers represent a roughly 20% increment over those of the Fourth
Data Release; all the data from previous data releases are included in the
present release. In addition to "standard" SDSS observations, DR5 includes
repeat scans of the southern equatorial stripe, imaging scans across M31 and
the core of the Perseus cluster of galaxies, and the first spectroscopic data
from SEGUE, a survey to explore the kinematics and chemical evolution of the
Galaxy. The catalog database incorporates several new features, including
photometric redshifts of galaxies, tables of matched objects in overlap regions
of the imaging survey, and tools that allow precise computations of survey
geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS
Sixth Data Release (DR6) is now public, available from http://www.sdss.or
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
The Sloan Digital Sky Survey Quasar Catalog III. Third Data Release
We present the third edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog. The catalog consists of the 46,420 objects in the SDSS Third Data
Release that have luminosities larger than M_i = -22 (in a cosmology with H_0 =
70 km/s/Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7), have at least one emission
line with FWHM larger than 1000 km/s or are unambiguously broad absorption line
quasars, are fainter than i = 15.0, and have highly reliable redshifts. The
area covered by the catalog is 4188 sq. deg. The quasar redshifts range from
0.08 to 5.41, with a median value of 1.47; the high-redshift sample includes
520 quasars at redshifts greater than four, of which 17 are at redshifts
greater than five. For each object the catalog presents positions accurate to
better than 0.2 arcsec. rms per coordinate, five-band (ugriz) CCD-based
photometry with typical accuracy of 0.03 mag, and information on the morphology
and selection method. The catalog also contains radio, near-infrared, and X-ray
emission properties of the quasars, when available, from other large-area
surveys. The calibrated digital spectra cover the wavelength region 3800--9200A
at a spectral resolution about 2000; the spectra can be retrieved from the
public database using the information provided in the catalog. A total of
44,221 objects in the catalog were discovered by the SDSS; 28,400 of the SDSS
discoveries are reported here for the first time.Comment: 41 pages, 7 figures, Accepted for publication in A
The Milky Way Tomography with SDSS: II. Stellar Metallicity
Using effective temperature and metallicity derived from SDSS spectra for
~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial
models for estimating these parameters from the SDSS u-g and g-r colors. We
apply this method to SDSS photometric data for about 2 million F/G stars and
measure the unbiased metallicity distribution for a complete volume-limited
sample of stars at distances between 500 pc and 8 kpc. The metallicity
distribution can be exquisitely modeled using two components with a spatially
varying number ratio, that correspond to disk and halo. The two components also
possess the kinematics expected for disk and halo stars. The metallicity of the
halo component is spatially invariant, while the median disk metallicity
smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to
-0.8 beyond several kpc. The absence of a correlation between metallicity and
kinematics for disk stars is in a conflict with the traditional decomposition
in terms of thin and thick disks. We detect coherent substructures in the
kinematics--metallicity space, such as the Monoceros stream, which rotates
faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms
scatter of only ~0.15 dex. We extrapolate our results to the performance
expected from the Large Synoptic Survey Telescope (LSST) and estimate that the
LSST will obtain metallicity measurements accurate to 0.2 dex or better, with
proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G
dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]Comment: 40 pages, 21 figures, emulateApJ style, accepted to ApJ, high
resolution figures are available from
http://www.astro.washington.edu/ivezic/sdss/mw/astroph0804.385
Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial
BACKGROUND: Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. METHODS: ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. FINDINGS: Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89–1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87–1·20], p=0·77). INTERPRETATION: In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. FUNDING:
UK National Institute for Health and Care Research
- …