173 research outputs found

    Evaluation of the Induction of Immune Memory following Infant Immunisation with Serogroup C Neisseria meningitidis Conjugate Vaccines - Exploratory Analyses within a Randomised Controlled Trial

    Get PDF
    Aim: We measured meningococcal serogroup C (MenC)-specific memory B-cell responses in infants by Enzyme-Linked Immunospot (ELISpot) following different MenC conjugate vaccine schedules to investigate the impact of priming on immune memory. Methods: Infants aged 2 months were randomised to receive 1 or 2 doses of MenC-CRM197 at 3 or 3 and 4 months, 1 dose of MenC-TT at 3 months, or no primary MenC doses. All children received a Haemophilus influenzae type b (Hib)-MenC booster at 12 months. Blood was drawn at 5, 12, 12 months +6 days and 13 months of age. Results: Results were available for 110, 103, 76 and 44 children from each group respectively. Following primary immunisations, and prior to the 12-month booster, there were no significant differences between 1- or 2-dose primed children in the number of MenC memory B-cells detected. One month following the booster, children primed with 1 dose MenC-TT had more memory B-cells than children primed with either 1-dose (p = 0.001) or 2-dose (p<0.0001) MenC-CRM197. There were no differences in MenC memory B-cells detected in children who received 1 or 2 doses of MenC-CRM197 in infancy and un-primed children. Conclusions: MenC-specific memory B-cell production may be more dependent on the type of primary vaccine used than the number of doses administered. Although the mechanistic differences between MenC-CRM197 and MenC-TT priming are unclear, it is possible that structural differences, including the carrier proteins, may underlie differential interactions with B- and T-cell populations, and thus different effects on various memory B-cell subsets. A MenC-TT/Hib-MenC-TT combination for priming/boosting may offer an advantage in inducing more persistent antibody.peer-reviewe

    Antibody persistence and booster responses to split-virion H5N1 avian influenza vaccine in young and elderly adults

    Get PDF
    Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 mu g of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 mu g alum-adjuvanted vaccine or 7.5 mu g dose vaccine were lower than 21days after the primary course and waned further with time. Re-immunization with the clade 2, 30 mu g alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody crossreactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available

    Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses

    Get PDF
    BACKGROUNDNK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.METHODSThe novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination.RESULTSWe show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10.CONCLUSIONThis study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein.TRIAL REGISTRATIONClinicalTrials.gov NCT02313077.FUNDINGUnited Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA)

    Antibody-Dependent Natural Killer Cell Activation after Ebola Vaccination

    Get PDF
    BACKGROUND:Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein antibodies suggest that Fc-dependent activation of effector cells, including NK cells, could play a role in vaccination against Ebola virus disease. METHODS:We analysed the effect of anti-Ebola glycoprotein antibody in the serum of U.K.-based volunteers vaccinated with the novel 2-dose heterologous Adenovirus type 26.ZEBOV, Modified Vaccinia Ankara-BN-Filo vaccine regimen, on primary human NK cell activation. RESULTS:We demonstrate primary human NK cell CD107a and IFN-γ expression, combined with downregulation of CD16, in response to recombinant Ebola virus glycoprotein and post-vaccine dose 1 and dose 2 sera. These responses varied significantly with vaccine regimen and NK cell activation was found to correlate with anti-glycoprotein antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. CONCLUSIONS:This study thus highlights the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses

    'Be on the TEAM' Study (Teenagers Against Meningitis): protocol for a controlled clinical trial evaluating the impact of 4CMenB or MenB-fHbp vaccination on the pharyngeal carriage of meningococci in adolescents.

    Get PDF
    INTRODUCTION: Capsular group B Neisseria meningitidis (MenB) is the most common cause of invasive meningococcal disease (IMD) in many parts of the world. A MenB vaccine directed against the polysaccharide capsule remains elusive due to poor immunogenicity and safety concerns. The vaccines licensed for the prevention of MenB disease, 4CMenB (Bexsero) and MenB-fHbp (Trumenba), are serogroup B 'substitute' vaccines, comprised of subcapsular proteins and are designed to provide protection against most MenB disease-causing strains. In many high-income countries, such as the UK, adolescents are at increased risk of IMD and have the highest rates of meningococcal carriage. Beginning in the late 1990s, immunisation of this age group with the meningococcal group C conjugate vaccine reduced asymptomatic carriage and disrupted transmission of this organism, resulting in lower group C IMD incidence across all age groups. Whether vaccinating teenagers with the novel 'MenB' protein-based vaccines will prevent acquisition or reduce duration of carriage and generate herd protection was unknown at the time of vaccine introduction and could not be inferred from the effects of the conjugate vaccines. 4CMenB and MenB-fHbp may also impact on non-MenB disease-causing capsular groups as well as commensal Neisseria spp. This study will evaluate the impact of vaccination with 4CMenB or MenB-fHbp on oropharyngeal carriage of pathogenic meningococci in teenagers, and consequently the potential for these vaccines to provide broad community protection against MenB disease. METHODS AND ANALYSIS: The 'Be on the TEAM' (Teenagers Against Meningitis) Study is a pragmatic, partially randomised controlled trial of 24 000 students aged 16-19 years in their penultimate year of secondary school across the UK with regional allocation to a 0+6 month schedule of 4CMenB or MenB-fHbp or to a control group. Culture-confirmed oropharyngeal carriage will be assessed at baseline and at 12 months, following which the control group will be eligible for 4CMenB vaccination. The primary outcome is the carriage prevalence of potentially pathogenic meningococci (defined as those with genogroups B, C, W, Y or X), in each vaccine group compared separately to the control group at 12 months post-enrolment, that is, 12 months after the first vaccine dose and 6 months after the second vaccine dose. Secondary outcomes include impact on carriage of: genogroup B meningococci; hyperinvasive meningococci; all meningococci; those meningococci expressing vaccine antigens and; other Neisseria spp. A sample size of 8000 in each arm will provide 80% power to detect a 30% reduction in meningococcal carriage, assuming genogroup B, C, W, Y or X meningococci carriage of 3.43%, a design effect of 1.5, a retention rate of 80% and a significance level of 0.05. Study results will be available in 2021 and will inform the UK and international immunisation policy and future vaccine development. ETHICS AND DISSEMINATION: This study is approved by the National Health Service South Central Research Ethics Committee (18/SC/0055); the UK Health Research Authority (IRAS ID 239091) and the UK Medicines and Healthcare products Regulatory Agency. Publications arising from this study will be submitted to peer-reviewed journals. Study results will be disseminated in public forums, online, presented at local and international conferences and made available to the participating schools. TRIAL REGISTRATION NUMBERS: ISRCTN75858406; Pre-results, EudraCT 2017-004609-42

    Pneumococcal carriage following PCV13 delivered as one primary and one booster dose (1 + 1) compared to two primary doses and a booster (2 + 1) in UK infants

    Get PDF
    In January 2020 the UK changed from a 2 + 1 schedule for 13-valent pneumococcal conjugate vaccine (PCV13) to a 1 + 1 schedule (doses at 3 and 12 months) based on a randomized immunogenicity trial comparing the two schedules. Carriage prevalence measured at the time of booster and 6 months later in 191 of the 213 study infants was 57 % (109/191) and 60 % (114/190) respectively. There were eight episodes of vaccine-type (VT) or vaccine-related 6C carriage in the 2 + 1 and six in the 1 + 1 group; ≥4-fold rises in serotype-specific IgG in 71 children with paired post-booster and follow up blood samples at 21–33 months of age were found in 20 % (7/35) of the 2 + 1 and 15 % (6/41) of the 1 + 1 group. VTs identified in carriage and inferred from serology were similar comprising 3, 19A and 19F. Dropping a priming dose from the 2 + 1 PCV 13 schedule did not increase VT carriage in the study cohort. Ongoing population level carriage studies will be important to confirm this

    Neuronal Antibodies in Children with or without Narcolepsy following H1N1-AS03 Vaccination

    Get PDF
    Type 1 narcolepsy is caused by deficiency of hypothalamic orexin/hypocretin. An autoimmune basis is suspected, but no specific antibodies, either causative or as biomarkers, have been identified. However, the AS03 adjuvanted split virion H1N1 (H1N1-AS03) vaccine, created to protect against the 2009 Pandemic, has been implicated as a trigger of narcolepsy particularly in children. Sera and CSFs from 13 H1N1-AS03-vaccinated patients (12 children, 1 young adult) with type 1 narcolepsy were tested for autoantibodies to known neuronal antigens including the N-methyl-D-aspartate receptor (NMDAR) and contactin-associated protein 2 (CASPR2), both associated with encephalopathies that include disordered sleep, to rodent brain tissue including the lateral hypothalamus, and to live hippocampal neurons in culture. When sufficient sample was available, CSF levels of melanin-concentrating hormone (MCH) were measured. Sera from 44 H1N1-ASO3-vaccinated children without narcolepsy were also examined. None of these patients' CSFs or sera was positive for NMDAR or CASPR2 antibodies or binding to neurons; 4/13 sera bound to orexin-neurons in rat brain tissue, but also to other neurons. MCH levels were a marginally raised (n = 8; p = 0.054) in orexin-deficient narcolepsy patients compared with orexin-normal children (n = 6). In the 44 H1N1-AS03-vaccinated healthy children, there was no rise in total IgG levels or in CASPR2 or NMDAR antibodies three weeks following vaccination. In conclusion, there were no narcolepsy-specific autoantibodies identified in type 1 narcolepsy sera or CSFs, and no evidence for a general increase in immune reactivity following H1N1-AS03 vaccination in the healthy children. Antibodies to other neuronal specific membrane targets, with their potential for directing use of immunotherapies, are still an important goal for future research.Peer reviewe
    • …
    corecore