1,433 research outputs found

    On the uniqueness of the surface sources of evoked potentials

    Full text link
    The uniqueness of a surface density of sources localized inside a spatial region RR and producing a given electric potential distribution in its boundary B0B_0 is revisited. The situation in which RR is filled with various metallic subregions, each one having a definite constant value for the electric conductivity is considered. It is argued that the knowledge of the potential in all B0B_0 fully determines the surface density of sources over a wide class of surfaces supporting them. The class can be defined as a union of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of the closed surfaces contains inside it another (nesting) of the closed or open surfaces.Comment: 16 pages, 5 figure

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure

    Stuffed Black Holes

    Full text link
    Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case. The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics. The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The resulting matched solutions cover then the whole initial (Cauchy) hypersurface, without any singularity, and can be useful for numerical applications. The simpler cases of one black hole (Schwarzschild data) or two identical black holes (Misner data) are explicitly solved. A procedure for extending this construction to the multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions obtained by the conformal imaging method. The numerical evolution of one such 'stuffed' black hole is compared with that of a pure vacuum or 'plain' black hole in the spherically symmetric case.Comment: 12 pages, Latex, 4 postscript figures, corrected some typos, new section about physical interpretatio

    VetPestX: Finally! An Online, Searchable, Pesticide Label Database Just for Pests of Animals

    Get PDF
    Almost all online pesticide databases contain crop-specific product labels; very few include products labeled for animal use. A single online location for veterinary pesticide labels was needed. Led by Alec Gerry of the University of California at Riverside (UCR), veterinary entomologists from California, Washington, New Mexico, and Oklahoma contributed information on animal pesticide products registered in five western states (CA, WA, OR, ID, NM) and OK to a new, online, searchable, veterinary pesticide labels database named VetPestX, developed and maintained on UC Riverside\u27s website. Animal producers and owners requesting pesticide information to manage pests are now routinely directed to VetPestX

    Diffraction of light by a planar aperture in a metallic screen

    Full text link
    We present a complete derivation of the formula of Smythe [Phys.Rev.72, 1066 (1947)] giving the electromagnetic field diffracted by an aperture created in a perfectly conducting plane surface. The reasoning, valid for any excitating field and any hole shape, makes use only of the free scalar Green function for the Helmoltz equation without any reference to a Green dyadic formalism. We compare our proof with the one previously given by Jackson and connect our reasoning to the general Huygens Fresnel theorem.Comment: J. Math. Phys. 47, 072901 (2006

    Equation of the field lines of an axisymmetric multipole with a source surface

    Get PDF
    Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy

    Full text link
    Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and compared to those of the field diffracted through a small aperture in a flat screen, i. e. the Bethe problem. The model is applied to coated, conically tapered optical fiber tips that are used in Near-Field Scanning Optical Microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of two effective dipoles located in the apex plane (an electric dipole and a magnetic dipole parallel to the incident fields at the apex) whose exact expressions are determined. However, the large "backward" emission in the P plane - a salient experimental fact that remained unexplained so far - is recovered in our analysis which goes beyond the two-dipole approximation.Comment: 21 pages, 6 figures, published in PRE in 200

    Passive magnetic shielding in static gradient fields

    Get PDF
    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis."We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada."https://aip.scitation.org/doi/10.1063/1.487371
    • …
    corecore