483 research outputs found
Carbon monoxide adsorption on platinum-osmium and platinum-ruthenium-osmium mixed nanoparticles
Density functional calculations (DFT) on carbon monoxide (CO) adsorbed on platinum, platinum-osmium, and platinum-ruthenium-osmium nanoclusters are used to elucidate changes on the adsorbate internal bond and the carbon-metal bond, as platinum is alloyed with osmium and ruthenium atoms. The relative strengths of the adsorbate internal bond and the carbon-metal bond upon alloying, which are related to the DFT calculated C–O and C–Pt stretching frequencies, respectively, cannot be explained by the traditional 5σ-donation/2π*-back-donation theoretical model. Using a modified π-attraction σ-repulsion mechanism, we ascribe the strength of the CO adsorbate internal bond to changes in the polarization of the adsorbate-substrate hybrid orbitals towards carbon. The strength of the carbon-metal bond is quantitatively related to the CO contribution to the adsorbate-substrate hybrid orbitals and the sp and d populations of adsorbing platinum atom. This work complements prior work on corresponding slabs using periodic DFT. Similarities and differences between cluster and periodic DFT calculations are discussed
Electron density topological and adsorbate orbital analyses of water and carbon monoxide co-adsorption on platinum
The electron density topology of carbon monoxide (CO) on dry and hydrated platinum is evaluated under the quantum theory of atoms in molecules (QTAIM) and by adsorbate orbital approaches. The impact of water co-adsorbate on the electronic, structural, and vibrational properties of CO on Pt are modelled by periodic density functional theory (DFT). At low CO coverage, increased hydration weakens C-O bonds and strengthens C-Pt bonds, as verified by changes in bond lengths and stretching frequencies. These results are consistent with QTAIM, the 5σ donation-2π∗ backdonation model, and our extended π-attraction σ-repulsion model (extended π-σ model). This work links changes in the non-zero eigenvalues of the electron density Hessian at QTAIM bond critical points to changes in the π and σ C-O bonds with systematic variation of CO/H2O co-adsorbate scenarios. QTAIM invariably shows bond strengths and lengths as being negatively correlated. For atop CO on hydrated Pt, QTAIM and phenomenological models are consistent with a direct correlation between C-O bond strength and CO coverage. However, DFT modelling in the absence of hydration shows that C-O bond lengths are not negatively correlated to their stretching frequencies, in contrast to the Badger rule: When QTAIM and phenomenological models do not agree, the use of the non-zero eigenvalues of the electron density Hessian as inputs to the phenomenological models, aligns them with QTAIM. The C-O and C-Pt bond strengths of bridge and three-fold bound CO on dry and hydrated platinum are also evaluated by QTAIM and adsorbate orbital analyses
Group Vibrational Mode Assignments as a Broadly Applicable Tool for Characterizing Ionomer Membrane Structure as a Function of Degree of Hydration
Infrared spectra of Nafion, Aquivion, and the 3M membrane were acquired during total dehydration of fully hydrated samples. Fully hydrated exchange sites are in a sulfonate form with a C₃V local symmetry. The mechanical coupling of the exchange site to a side chain ether link gives rise to vibrational group modes that are classified as C₃V modes. These mode intensities diminish concertedly with dehydration. When totally dehydrated, the sulfonic acid form of the exchange site is mechanically coupled to an ether link with no local symmetry. This gives rise to C₁ group modes that emerge at the expense of C₃V modes during dehydration. Membrane IR spectra feature a total absence of C₃V modes when totally dehydrated, overlapping C₁ and C₃V modes when partially hydrated, and a total absence of C₁ modes when fully hydrated. DFT calculated normal mode analyses complemented with molecular dynamics simulations of Nafion with overall λ (λ_(Avg)) values of 1, 3, 10, 15 and 20 waters/exchange site, were sectioned into sub-cubes to enable the manual counting of the distribution of λ_(local) values that integrate to λ_(Avg) values. This work suggests that at any state of hydration, IR spectra are a consequence of a distribution of λ_(local) values. Bond distances and the threshold value of λ_(local), for exchange site dissociation, were determined by DFT modelling and used to correlate spectra to manually counted λ_(local) distributions
Prevalence of micronutrient deficiency in popular diet plans
<p>Abstract</p> <p>Background</p> <p>Research has shown micronutrient deficiency to be scientifically linked to a higher risk of overweight/obesity and other dangerous and debilitating diseases. With more than two-thirds of the U.S. population overweight or obese, and research showing that one-third are on a diet at any given time, a need existed to determine whether current popular diet plans could protect followers from micronutrient deficiency by providing the minimum levels of 27 micronutrients, as determined by the U.S. Food and Drug Administrations (FDA) Reference Daily Intake (RDI) guidelines.</p> <p>Methods</p> <p>Suggested daily menus from four popular diet plans (<it>Atkins for Life </it>diet, <it>The South Beach Diet</it>, <it>the DASH diet</it>, <it>the DASH diet</it>) were evaluated. Calorie and micronutrient content of each ingredient, in each meal, were determined by using food composition data from the U.S. Department of Agriculture Nutrient Database for Standard Reference. The results were evaluated for sufficiency and total calories and deficient micronutrients were identified. The diet plans that did not meet 100% sufficiency by RDI guidelines for each of the 27 micronutrients were re-analyzed; (1) to identify a micronutrient sufficient calorie intake for all 27 micronutrients, and (2) to identify a second micronutrient sufficient calorie intake when consistently low or nonexistent micronutrients were removed from the sufficiency requirement.</p> <p>Results</p> <p>Analysis determined that each of the four popular diet plans failed to provide minimum RDI sufficiency for all 27 micronutrients analyzed. The four diet plans, on average, were found to be RDI sufficient in (11.75 ± 2.02; mean ± SEM) of the analyzed 27 micronutrients and contain (1748.25 ± 209.57) kcal. Further analysis of the four diets found that an average calorie intake of (27,575 ± 4660.72) would be required to achieve sufficiency in all 27 micronutrients. Six micronutrients (vitamin B7, vitamin D, vitamin E, chromium, iodine and molybdenum) were identified as consistently low or nonexistent in all four diet plans. These six micronutrients were removed from the sufficiency requirement and additional analysis of the four diets was conducted. It was determined that an average calorie content of (3,475 ± 543.81) would be required to reach 100% sufficiency in the remaining 21 micronutrients.</p> <p>Conclusion</p> <p>These findings are significant and indicate that an individual following a popular diet plan as suggested, with food alone, has a high likelihood of becoming micronutrient deficient; a state shown to be scientifically linked to an increased risk for many dangerous and debilitating health conditions and diseases.</p
Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries
Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction
Mobilization of xanthine oxidase from the gastrointestinal tract in acute pancreatitis
BACKGROUND: Xanthine oxidoreductase has been proposed to play a role in the development of local and systemic effects of acute pancreatitis. Under physiologic conditions, the enzyme exists mainly as xanthine dehydrogenase (XDH) but can be converted by proteolytic cleavage to its superoxide-generating form xanthine oxidase (XOD). In addition to its intracellular location XDH/XOD is also associated to the polysaccharide chains of proteoglycans on the external endothelial cell membrane. In the early stages of acute pancreatitis, this enzyme seems to be arising from its mobilization from the gastrointestinal endothelial cell surface. Taking into account the ability of α-amylase to hydrolyze the internal α-1,4 linkages of polysaccharides, we wanted to elucidate the involvement of α-amylase in XDH/XOD mobilization from the gastrointestinal endothelial cell surface and the relevance of the ascitic fluid (AF) as the source of α-amylase in experimental acute pancreatitis. METHODS: Acute pancreatitis was induced in male Wistar rats by intraductal administration of 5% sodium taurocholate. In another experimental group 3000 U/Kg α-amylase was i.v. administered. The concentrations of XDH, XOD and α-amylase in plasma and AF and myeloperoxidase (MPO) in lung have been evaluated. In additional experiments, the effect of peritoneal lavage and the absorption of α-amylase present in the AF by an isolated intestine have been determined. RESULTS: Similar increase in XDH+XOD activity in plasma was observed after induction of acute pancreatitis and after i.v. administration of α-amylase. Nevertheless, the conversion from XDH to XOD was only observed in the pancreatitis group. Lung inflammation measured as MPO activity was observed only in the pancreatitis group. In addition peritoneal lavage prevented the increase in α-amylase and XDH+XOD in plasma after induction of pancreatitis. Finally, it was observed that α-amylase is absorbed from the AF by the intestine. CONCLUSIONS: During the early stages of acute pancreatitis, α-amylase absorbed from AF through the gastrointestinal tract could interfere with the binding of XDH/XOD attached to glycoproteins of the endothelial cells. Proteolytic enzymes convert XDH into its oxidase form promoting an increase in circulating XOD that has been reported to be one of the mechanisms involved in the triggering of the systemic inflammatory process
Localisation of Human Papillomavirus 16 E7 Oncoprotein Changes with Cell Confluence
E7 is one of the best studied proteins of human papillomavirus type 16, largely because of its oncogenic potential linked to cervical cancer. Yet the sub-cellular location of E7 remains confounding, even though it has been shown to be able to shuttle between the nucleus and the cytoplasm. Here we show with immunocytochemistry that E7 proteins are located in the nucleus and cytoplasm in sub-confluent cells, but becomes cytoplasmic in confluent cells. The change in E7's location is independent of time in culture, cell division, cell cycle phase or cellular differentiation. Levels of E7 are also increased in confluent cells as determined by Western blotting. Our investigations have also uncovered how different analytical techniques influence the observation of where E7 is localised, highlighting the importance of technical choice in such analysis. Understanding the localisation of E7 will help us to better comprehend the function of E7 on its target proteins
Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf"
[EN] Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA.cm(-2), leading to 60 mL.cm(-2).day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H-2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf' has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 +/- 0.25) mL.cm(-2).day(-1).We acknowledge support by projects from Ministerio de Economia y Competitividad (MINECO) of Spain (Consolider HOPE CSD2007-00007, MAT2010-19827), Generalitat Valenciana (PROMETEO/2009/058 and Project ISIC/2012/008 "Institute of Nanotechnologies for Clean Energies"), and Fundacio Bancaixa (P1.1B2011-50). S.G. acknowledges support by MINECO of Spain under the Ramon y Cajal programme. The SCIC of the University Jaume I de Castello is also acknowledged for the gas analysis measurements. C.S. acknowledges the POSDRU/89/1.5/S/58852 Project "Postdoctoral programme for training scientific researchers", co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. We want to acknowledge Prof. J. Bisquert for the fruitful discussions related to this manuscript.Trevisan, R.; Rodenas, P.; González-Pedro, V.; Sima, C.; Sánchez, RS.; Barea, EM.; Mora-Sero, I.... (2013). Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf". Journal of Physical Chemistry Letters. 4(1):141-146. https://doi.org/10.1021/jz301890mS1411464
- …