340 research outputs found
Symmetric Composite Laminate Stress Analysis
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example
Interplay of Chemical Bonding and Magnetism in Fe_4N, Fe_3N, Fe_2N
Using spin density functional theory we have carried out a comparative study
of chemical bonding and magnetism in Fe_4N, Fe_3N and Fe_2N. All of these
compounds form close packed Fe lattices, while N occupies octahedral
interstitial positions. High spin fcc Fe and hypothetical FeN with rock salt
structure have been included in our study as reference systems. We find strong,
covalent Fe-N bonds as a result of a substantial \sigma-type p-d hybridisation,
with some charge transfer to N. Those Fe d orbitals which contribute to the p-d
bonds, do no longer participate in the exchange splitting of the Fe d bands.
Because of the large exchange fields, the majority spin d bands are always
fully occupied, while the minority spin d bands are close to half-filling, thus
optimizing the Fe d-d covalent bonding. As a consequence, in good approximation
the individual Fe moments decrease in steps of 0.5 \mu_B from fcc iron (2.7
\mu_B) via Fe_4N (2.7 and 1.97 mu_B}), \chem{Fe_3N} (1.99 \mu_B) to \zeta -
Fe_2N (1.43 \mu_B).Comment: 16 pages, 15 figure
Optical Conductivity of the Trellis-Lattice t-J Model: Charge Fluctuations in NaV_2O_5
Optical conductivity of the trellis lattice t-J model at quarter filling is
calculated by an exact-diagonalization technique on small clusters, whereby the
valence state of V ions of NaV_2O_5 is considered. We show that the
experimental features at \sim 1 eV, including peak positions, presence of
shoulders, and anisotropic spectral weight, can be reproduced in reasonable
range of parameter values, only by assuming that the system is in the charge
disproportionated ground state. Possible reconciliation with experimental data
suggesting the presence of uniform ladders at T>T_c is discussed.Comment: 4 pages, 4 gif figures. Minor revisions have been made. Hardcopies of
figures (or the entire manuscript) can be obtained by e-mail request to
[email protected]
Brake assembly bench part set up and part presentation
In partnership with Meritor, this project focused on improving the part presentation and downtime losses of the current brake assembly process. The way in which the parts are currently presented to an operator causes an ergonomic strain on the worker, which is not ideal for production, resulting in worker downtime losses and an inefficient build rate. The Rapid Upper Limb Assessment (RULA) was conducted to ensure the ergonomic strain on the worker remains at an acceptable level. As a result of performing two fishbone diagrams on the downtime and ergonomic strain, the team quantified the system losses by the amount of time lost and quantified harmful motions by conducting a RULA assessment. Based on the findings of the Pareto chart and utilizing various Industrial Engineering tools, the team was able to provide solutions to reduce the amount of downtime while also ensuring the motions of workers remain ergonomically safe
Independent Component Analysis-motivated Approach to Classificatory Decomposition of Cortical Evoked Potentials
BACKGROUND: Independent Component Analysis (ICA) proves to be useful in the analysis of neural activity, as it allows for identification of distinct sources of activity. Applied to measurements registered in a controlled setting and under exposure to an external stimulus, it can facilitate analysis of the impact of the stimulus on those sources. The link between the stimulus and a given source can be verified by a classifier that is able to "predict" the condition a given signal was registered under, solely based on the components. However, the ICA's assumption about statistical independence of sources is often unrealistic and turns out to be insufficient to build an accurate classifier. Therefore, we propose to utilize a novel method, based on hybridization of ICA, multi-objective evolutionary algorithms (MOEA), and rough sets (RS), that attempts to improve the effectiveness of signal decomposition techniques by providing them with "classification-awareness." RESULTS: The preliminary results described here are very promising and further investigation of other MOEAs and/or RS-based classification accuracy measures should be pursued. Even a quick visual analysis of those results can provide an interesting insight into the problem of neural activity analysis. CONCLUSION: We present a methodology of classificatory decomposition of signals. One of the main advantages of our approach is the fact that rather than solely relying on often unrealistic assumptions about statistical independence of sources, components are generated in the light of a underlying classification problem itself
Recommended from our members
Language interoperability for high-performance parallel scientific components
With the increasing complexity and interdisciplinary nature of scientific applications, code reuse is becoming increasingly important in scientific computing. One method for facilitating code reuse is the use of components technologies, which have been used widely in industry. However, components have only recently worked their way into scientific computing. Language interoperability is an important underlying technology for these component architectures. In this paper, we present an approach to language interoperability for a high-performance parallel, component architecture being developed by the Common Component Architecture (CCA) group. Our approach is based on Interface Definition Language (IDL) techniques. We have developed a Scientific Interface Definition Language (SIDL), as well as bindings to C and Fortran. We have also developed a SIDL compiler and run-time library support for reference counting, reflection, object management, and exception handling (Babel). Results from using Babel to call a standard numerical solver library (written in C) from C and Fortran show that the cost of using Babel is minimal, where as the savings in development time and the benefits of object-oriented development support for C and Fortran far outweigh the costs
Recommended from our members
Fermentative Approaches to Hydrogen Production
A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 23-26, 2005, in Washington, D.C
NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling
Based on recent experimental evidences that the electronic charge degrees of
freedom plays an essential role in the spin-Peierls--like phase transition of
NaVO, we first make the mapping of low-energy electronic states of the
model for NaVO to the quarter-filled ladder with
anisotropic parameter values between legs and rungs, and then show that this
anisotropic ladder is in the Mott insulating state, of which
lowest-energy states can be modeled by the one-dimensional Heisenberg
antiferromagnet with the effective exchange interaction whose value
is consistent with experimental estimates. We furthermore examine the coupling
between the ladders as the trellis lattice model and show that the
nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the
instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or
the entire manuscript) can be obtained by e-mail request to
[email protected]
Entanglement and Tensor Product Decomposition for Two Fermions
The problem of the choice of tensor product decomposition in a system of two
fermions with the help of Bogoliubov transformations of creation and
annihilation operators is discussed. The set of physical states of the
composite system is restricted by the superselection rule forbidding the
superposition of fermions and bosons. It is shown that the Wootters concurrence
is not proper entanglement measure in this case. The explicit formula for the
entanglement of formation is found and its dependence on tensor product
decompositions of the Hilbert space is discussed. It is shown that the set of
separable states is narrower than in two-qubit case. Moreover, there exist
states which are separable with respect to all tensor product decompositions of
the Hilbert space.Comment: 8pp, published versio
- …