310 research outputs found

    On admissible shifts of generalized white noises

    Get PDF
    Let S be the Schwartz space of rapidly decreasing real functions. The dual space S* consists of the tempered distributions and the relation S ⊂ L2(R) ⊂ S* holds. Let γ be the Gaussian white noise on S* with the characteristic functional γ(ξ) = exp{-∥ξ∥2/2}, ξ ∈ S, where ∥·∥ is the L2(R)-norm. Let ν be the Poisson white noise on S* with the characteristic functional ν(ξ) = expΥ{hooked}R∫R {[exp(iξ(t)u)] - 1 - (1 + u2)-1(iξ(t)u)} dη(u)dt), ξ ∈ S, where the Lévy measure is assumed to satisfy the condition ∫Ru2dη(u) \u3c ∞. It is proved that γ*ν has the same dichotomy property for shifts as the Gaussian white noise, i.e., for any ω ∈ S*, the shift (γ*ν)ω of γ*ν by ω and γ*ν are either equivalent or orthogonal. They are equivalent if and only if when ω ∈ L2(R) and the Radon-Nikodym derivative is derived. It is also proved that for the Poisson white noice νω is orthogonal to ν for any non-zero ω in S*. © 1982

    Effect of ferroelectric layers on the magnetocapacitance properties of superlattices-based oxide multiferroics

    Full text link
    A series of superlattices composed of ferromagnetic La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO) and ferroelectric/paraelectric Ba1−x_{1-x}Srx_xTiO3_3 (0≤\leq x≤\leq 1) were deposited on SrTiO3_3 substrates using the pulsed laser deposition. Films of epitaxial nature comprised of spherical mounds having uniform size are obtained. Magnetotransport properties of the films reveal a ferromagnetic Curie temperature in the range of 145-158 K and negative magnetoresistance as high as 30%, depending on the type of ferroelectric layers employed for their growth (\QTR{it}{i.e.} '\QTR{it}{x'} value). Ferroelectricity at temperatures ranging from 55 K to 105 K is also observed, depending on the barium content. More importantly, the multiferroic nature of the film is determined by the appearance of negative magnetocapacitance, which was found to be maximum around the ferroelectric transition temperature (3% per \QTR{it}{tesla}). These results are understood based on the role of the ferroelectric/paraelectric layers and strains in inducing the multiferroism.Comment: Accepted to Applied Physics Letter

    DETERMINATION OF THE INOCULATION FREQUENCY, TIMING OF INOCULATION AND DOSE OF A BACTERIAL RUMINAL INOCULANT FOR ACIDOSIS PREVENTION IN FEEDLOT CATTLE

    Get PDF
    We are evaluating the efficacy of a ruminal bacterial inoculant (Megasphaera elsdenii 407 A) for prevention of acute acidosis in grain-fed cattle. As a part of this process, we examined the effects of inoculation frequency, timing of inoculation and dose of 407 A for prevention of acute acidosis in ruminally fistulated cattle. Three levels of frequency, two levels of timing and three doses were considered, however, a complete 3x2x3 factorial study was not run because of resource constraints. The study was conducted in two separate trials. The first was designed as a 3x2 factorial experiment with inoculation frequency and timing of inoculation while holding dose constant. The second trial was designed as a 2x3 factorial experiment involving inoculation frequency and 407 A dose while holding timing constant. Both of these trials were conducted as complete block designs with seven blocks, with repeated measurements of ruminal lactic acid made across the duration of the two trials. Changes in ruminal pH for acutely acidotic cattle (pH:≤;5.0) are known to be driven largely by changes in total ruminal lactic acid concentration and that is why this variable was selected for these trials. Area under the lactic acid curves was selected as a method of summarizing across the repeated measures. Response surface techniques were used to determine the optimal settings for the treatment factors examined. Alternative designs will be contrasted

    Pressure induced enhancement of ferroelectricity in multiferroic RRMn2_2O5_5(RR=Tb,Dy, and Ho)

    Full text link
    Measurements of ferroelectric polarization and dielectric constant were done on RRMn2_2O5_5 (RR=Tb, Dy, and Ho) with applied hydrostatic pressures of up to 18 kbar. At ambient pressure, distinctive anomalies were observed in the temperature profile of both physical properties at critical temperatures marking the onset of long range AFM order (TN1_{N1}), ferroelectricity (TC1_{C1}) as well as at temperatures when anomalous changes in the polarization, dielectric constant and spin wave commensurability have been previously reported. In particular, the step in the dielectric constant at low temperatures (TC2_{C2}), associated with both a drop in the ferroelectric polarization and an incommensurate magnetic structure, was shown to be suddenly quenched upon passing an RR-dependent critical pressure. This was shown to correlate with the stabilization of the high ferroelectric polarization state which is coincident with the commensurate magnetic structure. The observation is suggested to be due to a pressure induced phase transition into a commensurate magnetic structure as exemplified by the pressure-temperature (pp-TT) phase diagrams constructed in this work. The pp-TT phase diagrams are determined for all three compounds.Comment: 8 pages, 6 figures, submitted for review in Phys. Rev.

    The Effect of EMI Generated from Spread-Spectrum-Modulated SiC-Based Buck Converter on the G3-PLC Channel

    Get PDF
    6siPower line communication (PLC) is increasingly emerging as an important communication technology for the smart-grid environment. As PLC systems use the existing infrastructure, they are always exposed to conducted electromagnetic interference (EMI) from switching mode power converters, which need to be tightly controlled to meet EMC regulations and to ensure the proper operation of the PLC system. For this purpose, spread-spectrum modulation (SSM) techniques are widely adopted to decrease the amplitude of the generated EMI from the power converters so as to comply with EMC regulations. In this paper, the influence of a spread-spectrum-modulated SiC-based buck converter on the G3-PLC channel performance is described in terms of channel capacity reduction using the Shannon–Hartley equation. The experimental setup was implemented to emulate a specific coupling path between the power and communication circuits and the channel capacity reduction was evaluated by the Shannon–Hartley equation in several operating scenarios and compared with the measured frame error rate. Based on the obtained results, SSM provides the EMI spectral peak amplitude reduction required to pass the electromagnetic compatibility (EMC) tests, but results in increased EMI-induced channel capacity degradation and increased transmission error rate in PLC systems.openopenWaseem El Sayed; Piotr Lezynski; Robert Smolenski; Niek Moonen; Paolo Crovetti; Dave W. P. ThomasEl Sayed, Waseem; Lezynski, Piotr; Smolenski, Robert; Moonen, Niek; Crovetti, PAOLO STEFANO; Thomas, Dave W. P

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure

    Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects

    Get PDF
    Maximal physical exertion is accompanied by increased degradation of purine nucleotides in muscles with the products of purine catabolism accumulating in the plasma. Thanks to membrane transporters, these products remain in an equilibrium between the plasma and red blood cells where they may serve as substrates in salvage reactions, contributing to an increase in the concentrations of purine nucleotides. In this study, we measured the concentrations of adenine nucleotides (ATP, ADP, AMP), inosine nucleotides (IMP), guanine nucleotides (GTP, GDP, GMP), and also pyridine nucleotides (NAD, NADP) in red blood cells immediately after standardized physical effort with increasing intensity, and at the 30th min of rest. We also examined the effect of muscular exercise on adenylate (guanylate) energy charge—AEC (GEC), and on the concentration of nucleosides (guanosine, inosine, adenosine) and hypoxanthine. We have shown in this study that a standardized physical exercise with increasing intensity leads to an increase in IMP concentration in red blood cells immediately after the exercise, which with a significant increase in Hyp concentration in the blood suggests that Hyp was included in the IMP pool. Restitution is accompanied by an increase in the ATP/ADP and ADP/AMP ratios, which indicates an increase in the phosphorylation of AMP and ADP to ATP. Physical effort applied in this study did not lead to changes in the concentrations of guanine and pyridine nucleotides in red blood cells

    Experiences from treating seven adult 5q spinal muscular atrophy patients with Nusinersen

    Get PDF
    Background: The antisense oligonucleotide Nusinersen recently became the first approved drug against spinal muscular atrophy (SMA). It was approved for all ages, albeit the clinical trials were conducted exclusively on children. Hence, clinical data on adults being treated with Nusinersen is scarce. In this case series, we report on drug application, organizational demands, and preliminary effects during the first 10 months of treatment with Nusinersen in seven adult patients. Methods: All patients received intrathecal injections with Nusinersen. In cases with severe spinal deformities, we performed computed tomography (CT)-guided applications. We conducted a total of 40 administrations of Nusinersen. We evaluated the patients with motor, pulmonary, and laboratory assessments, and tracked patient-reported outcome. Results: Intrathecal administration of Nusinersen was successful in most patients, even though access to the lumbar intrathecal space in adults with SMA is often challenging. No severe adverse events occurred. Six of the seven patients reported stabilization of motor function or reduction in symptom severity. The changes in the assessed scores did not reach a significant level within this short time period. Conclusions: Treating adult SMA patients with Nusinersen is feasible and most patients consider it beneficial. It demands a complex organizational and interdisciplinary effort. Due to the slowly decreasing motor functions in adult SMA patients, long observation phases for this recently approved treatment are needed to allow conclusions about effectiveness of Nusinersen in adults

    Electric-field control of spin waves at room temperature in multiferroic BiFeO3

    Full text link
    To face the challenges lying beyond current CMOS-based technology, new paradigms for information processing are required. Magnonics proposes to use spin waves to carry and process information, in analogy with photonics that relies on light waves, with several advantageous features such as potential operation in the THz range and excellent coupling to spintronics. Several magnonic analog and digital logic devices have been proposed, and some demonstrated. Just as for spintronics, a key issue for magnonics is the large power required to control/write information (conventionally achieved through magnetic fields applied by strip lines, or by spin transfer from large spin-polarized currents). Here we show that in BiFeO3, a room-temperature magnetoelectric material, the spin wave frequency (>600 GHz) can be tuned electrically by over 30%, in a non-volatile way and with virtually no power dissipation. Theoretical calculations indicate that this effect originates from a linear magnetoelectric effect related to spin-orbit coupling induced by the applied electric field. We argue that these properties make BiFeO3 a promising medium for spin wave generation, conversion and control in future magnonics architectures.Comment: 3 figure
    • …
    corecore