25 research outputs found

    Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal

    Get PDF
    Despite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In February 2009, we commenced an investigation for WNV in mosquitoes, horses and caimans from the Pantanal, Central-West Brazil. The sera of 168 horses and 30 caimans were initially tested using a flaviviruses-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralisation test (PRNT90) for WNV and its most closely-related flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralising antibodies. Of the 93 (55.4%) blocking ELISA-seropositive horse serum samples, five (3%) were seropositive for WNV, nine (5.4%) were seropositive for St. Louis encephalitis virus, 18 (10.7%) were seropositive for Ilheus virus, three (1.8%) were seropositive for Cacipacore virus and none were seropositive for Rocio virus using PRNT90, with a criteria of > four-fold antibody titre difference. All caimans were negative for flaviviruses-specific antibodies using the blocking ELISA. No virus genome was detected from caiman blood or mosquito samples. The present study is the first report of confirmed serological evidence of WNV activity in Brazil

    Investigating the spatial risk distribution of West Nile virus disease in birds and humans in southern Ontario from 2002 to 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The West Nile virus (WNv) became a veterinary public health concern in southern Ontario in 2001 and has continued to threaten public health. Wild bird mortality has been shown to be an indicator for tracking the geographic distribution of the WNv. The purpose of this study was to investigate the latent risk distribution of WNv disease among dead birds and humans in southern Ontario and to compare the spatial risk patterns for the period 2002–2005. The relationship between the mortality fraction in birds and incidence rate in humans was also investigated.</p> <p>Methods</p> <p>Choropleth maps were created to investigate the spatial variation in bird and human WNv risk for the public health units of southern Ontario. The data were smoothed by empirical Bayesian estimation before being mapped. Isopleth risk maps for both the bird and human data were created to identify high risk areas and to investigate the potential relationship between the WNv mortality fraction in birds and incidence rates in humans. This was carried out by the geostatistical prediction method of kriging. A Poisson regression analysis was used to model regional human WNv case counts as a function of the spatial coordinates in the east and north direction and the regional bird mortality fractions. The presence of disease clustering and the location of disease clusters were investigated by the spatial scan test.</p> <p>Results</p> <p>The isopleth risk maps exhibited high risk areas that were relatively constant from year to year. There was an overlap in the bird and human high risk areas, which occurred in the central-west and south-west areas of southern Ontario. The annual WNv cause-specific mortality fractions in birds for 2002 to 2005 were 31.9, 22.0, 19.2 and 25.2 positive birds per 100 birds tested, respectively. The annual human WNv incidence rates for 2002 to 2005 were 2.21, 0.76, 0.13 and 2.10 human cases per 100,000 population, respectively. The relative risk of human WNv disease was 0.72 times lower for a public health unit that was 100 km north of another public health unit. The relative risk of human WNv disease increased by the factor 1.44 with every 10 positive birds per 100 tested. The scan statistic detected disease cluster in the bird and human data. The human clusters were not significant, when the analysis was conditioned on the bird data.</p> <p>Conclusion</p> <p>The study indicates a significant relationship between the spatial pattern of WNv risk in humans and birds.</p

    Detection of West Nile virus in wild birds in Tana River and Garissa Counties, Kenya

    No full text
    Background West Nile fever virus is a zoonotic arboviral infection maintained in a sylvatic cycle involving mosquito vectors and birds. It is one the arboviruses whose geographical range is expanding because of climate and land use changes that enhance the densities of mosquitoes and promote mosquito-bird-human interactions. We carried out a survey to determine the reservoirs of WNV among wild birds in Tana River and Garissa counties, Kenya. Methods Blood samples were obtained from 361 randomly trapped wild birds. Using real-time polymerase chain reaction (PCR), all samples were screened for WNV using gene specific primer sets amplifying a portion of the E region of the genome encoding the envelope protein. Results Sixty five (65) out of 361 birds screened tested positive for WNV on real-time PCR assay. Sequencing of the selected positive samples reveals that the isolated WNV were most closely related to strains isolated from China (2011). A regression analysis indicated that sampling location influenced the occurrence of WNV while species, age, weight and sex of the birds did not have any effect. Conclusions This study provides baseline information on the existing circulation of WNV in this region among wild bird reservoirs that could spill over to the human population and points to the need for implementation of surveillance programs to map the distribution of the virus among reservoirs. Awareness creation about West Nile fever in this region is important to improve its detection and management

    Mosquito-borne arboviruses of African origin: review of key viruses and vectors

    Get PDF
    Abstract Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but that there are several other viruses with potential for international challenge. The conclusion reached is that increased human population growth in decades ahead coupled with increased international travel and trade is likely to sustain and increase the threat of further geographical spread of current and new arboviral disease
    corecore