8 research outputs found

    Kant, race, and natural history

    Get PDF
    This article presents a new argument concerning the relation between Kant’s theory of race and aspects of the critical philosophy. It argues that Kant’s treatment of the problem of the systematic unity of nature and knowledge in the Critique of Pure Reason and the Critique of the Power of Judgment can be traced back a methodological problem in the natural history of the period – that of the possibility of a natural system of nature. Kant’s transformation of the methodological problem from natural history into a set of philosophical (and specifically epistemological) problems proceeds by way of the working out of his own problem in natural history – the problem of the natural history of the human races – and specifically the problem of the unity in diversity of the human species, in response to which he develops a theory of race. This theory of race is, further, the first developed model of the use of teleological judgment in Kant’s work. The article thus argues that Kant’s philosophical position on the systematic unity of nature and of knowledge in the first and third Critiques, and his account and defense of teleological judgment, are developed out of problems first articulated in his solution to the problem of the unity in diversity of the human species – that is, in his theory of race. The article does not seek to establish that these aspects of the critical philosophy are therefore racialised. But it does demonstrate, against those who deny its salience to his philosophy, how the problem of the unity in diversity of the human species and Kant’s theory of race is significant for the development of aspects of the critical philosophy and thus contributes to their philosophical problematics

    Science and normative authority

    No full text

    Deep Storage : Collecting, Storing, and Archiving in Art

    No full text
    "This publication documents the importance of collecting and packaging, storing, and archiving as a contemporary artistic strategy. It lends surprising insight into the process of creating art, which itself is a result of collecting experiences and materials, by using the work of forty internationally celebrated artists as examples" -- dust jacket

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020

    References

    No full text

    Bibliography

    No full text

    TRY plant trait database, enhanced coverage and open access

    No full text
    Plant traits-the morphological, ahawnatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore