6,419 research outputs found

    Queen control of a key life-history event in a eusocial insect

    Get PDF
    In eusocial insects, inclusive fitness theory predicts potential queen–worker conflict over the timing of events in colony life history. Whether queens or workers control the timing of these events is poorly understood. In the bumble-bee Bombus terrestris, queens exhibit a ‘switch point’ in which they switch from laying diploid eggs yielding females (workers and new queens) to laying haploid eggs yielding males. By rearing foundress queens whose worker offspring were removed as pupae and sexing their eggs using microsatellite genotyping, we found that queens kept in the complete absence of adult workers still exhibit a switch point. Moreover, the timing of their switch points relative to the start of egg-laying did not differ significantly from that of queens allowed to produce normal colonies. The finding that bumble-bee queens can express the switch point in the absence of workers experimentally demonstrates queen control of a key life-history event in eusocial insects. In addition, we found no evidence that workers affect the timing of the switch point either directly or indirectly via providing cues to queens, suggesting that workers do not fully express their interests in queen–worker conflicts over colony life history

    Measurement of overall insecticidal effects in experimental hut trials

    Get PDF
    BACKGROUND: The 'overall insecticidal effect' is a key measure used to evaluate public health pesticides for indoor use in experimental hut trials. It depends on the proportion of mosquitoes that are killed out of those that enter the treated hut, intrinsic mortality in the control hut, and the ratio of mosquitoes entering the treatment hut to those entering the control hut. This paper critically examines the way the effect is defined, and discusses how it can be used to infer effectiveness of intervention programmes. FINDINGS: The overall insecticidal effect, as defined by the World Health Organization in 2006, can be negative when deterrence from entering the treated hut is high, even if all mosquitoes that enter are killed, wrongly suggesting that the insecticide enhances mosquito survival. Also in the absence of deterrence, even if the insecticide kills all mosquitoes in the treatment hut, the insecticidal effect is less than 100%, unless intrinsic mortality is nil. A proposed alternative definition for the measurement of the overall insecticidal effect has the desirable range of 0 to 1 (100%), provided mortality among non-repelled mosquitoes in the treated hut is less than the corresponding mortality in the control hut. This definition can be built upon to formulate the coverage-dependent insecticidal effectiveness of an intervention programme. Coverage-dependent population protection against feeding can be formulated similarly. CONCLUSIONS: This paper shows that the 2006 recommended quantity for measuring the overall insecticidal effect is problematic, and proposes an alternative quantity with more desirable propertie

    Serial Monodomy in the Gypsy Ant, Aphaenogaster araneoides: Does Nest Odor Reduction Influence Colony Relocation?

    Get PDF
    Serial monodomy is the nesting behavior in which a colony of animals maintains multiple nests for its exclusive use, occupying one nest at a time. Among serially monodomous ants, the availability of unoccupied nests reduces the probability and costs of army ant attacks. It has been proposed that nest odors mediate serial monodomy in the gypsy ant, Aphaenogaster araneoides Emery (Hymenoptera: Formicidae), and that colonies avoid returning to previously occupied nests that harbor colony odors. To evaluate this hypothesis, the odors inside the nests of A. araneoides colonies were experimentally reduced through ventilation; the nest movement behaviors of treatment and control colonies were compared. Odor reduction was found to have increased the frequency of movements into and out of the treated nest, without a change in the total occupation duration in the treated nest. Nests with a more open architecture that permitted natural flow of air were reoccupied more quickly than nests with smaller nest entrances. In summary, the openness of the architecture of A. araneoides nests and the ventilation of air through nests alters the use of these nests. These findings further support the working hypothesis that nest-bound odors mediate the pattern of serial monodomy in A. araneoides

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Colony size predicts division of labour in Attine ants

    Get PDF
    Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Spinal pain: Current understanding, trends, and the future of care

    Get PDF
    © 2015 Trainor et al. This commissioned review paper offers a summary of our current understanding of nonmalignant spinal pain, particularly persistent pain. Spinal pain can be a complex problem, requiring management that addresses both the physical and psychosocial components of the pain experience. We propose a model of care that includes the necessary components of care services that would address the multidimensional nature of spinal pain. Emerging care services that tailor care to the individual person with pain seems to achieve better outcomes and greater consumer satisfaction with care, while most likely containing costs. However, we recommend that any model of care and care framework should be developed on the basis of a multidisciplinary approach to care, with the scaffold being the principles of evidence-based practice. Importantly, we propose that any care services recommended in new models or frameworks be matched with available resources and services-this matching we promote as the fourth principle of evidence-based practice. Ongoing research will be necessary to offer insight into clinical outcomes of complex interventions, while practice-based research would uncover consumer needs and workforce capacity. This kind of research data is essential to inform health care policy and practice

    Review of harm-benefit analysis in the use of animals in research

    Get PDF
    This is the final version of the report. Available from the Home Office via the link in this recordReport of our review of the processes of harm-benefit analysis (HBA) carried out under the UK Animals (Scientific Procedures) Act 1986 (A(SP)A).Report of the Animals in Science Committee Harm-Benefit Analysis Sub-Group chaired by Professor Gail Davies. The Animals in Science Committee Harm-Benefit Analysis subgroup, chaired by Professor Gail Davies, has produced a review of the harm-benefit analysis (HBA). This review is an analysis of the underpinnings and implementation of the HBA which remains a crucial step in the justification of the use of animals in science. It is published in response to a ministerial commission.Animals in Science Committe

    Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma

    Get PDF
    Background: Unlike mammals, teleost fishes are capable of regenerating sensory inner ear hair cells that have been lost following acoustic or ototoxic trauma. Previous work indicated that immediately following sound exposure, zebrafish saccules exhibit significant hair cell loss that recovers to pre-treatment levels within 14 days. Following acoustic trauma in the zebrafish inner ear, we used microarray analysis to identify genes involved in inner ear repair following acoustic exposure. Additionally, we investigated the effect of growth hormone (GH) on cell proliferation in control zebrafish utricles and saccules, since GH was significantly up-regulated following acoustic trauma. Results: Microarray analysis, validated with the aid of quantitative real-time PCR, revealed several genes that were highly regulated during the process of regeneration in the zebrafish inner ear. Genes that had fold changes of \u3e = 1.4 and P values \u3c = 0.05 were considered significantly regulated and were used for subsequent analysis. Categories of biological function that were significantly regulated included cancer, cellular growth and proliferation, and inflammation. Of particular significance, a greater than 64-fold increase in growth hormone (gh1) transcripts occurred, peaking at 2 days post-sound exposure (dpse) and decreasing to approximately 5.5-fold by 4 dpse. Pathway Analysis software was used to reveal networks of regulated genes and showed how GH affected these networks. Subsequent experiments showed that intraperitoneal injection of salmon growth hormone significantly increased cell proliferation in the zebrafish inner ear. Many other gene transcripts were also differentially regulated, including heavy and light chain myosin transcripts, both of which were down-regulated following sound exposure, and major histocompatability class I and II genes, several of which were significantly regulated on 2 dpse. Conclusions: Transcripts for GH, MHC Class I and II genes, and heavy-and light-chain myosins, as well as many others genes, were differentially regulated in the zebrafish inner ear following overexposure to sound. GH injection increased cell proliferation in the inner ear of non-sound-exposed zebrafish, suggesting that GH could play an important role in sensory hair cell regeneration in the teleost ear
    • 

    corecore