3,885 research outputs found
What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs
We study precision electroweak constraints on the close cousin of the
Littlest Higgs, the SU(6)/Sp(6) model. We identify a near-oblique limit in
which the heavy W' and B' decouple from the light fermions, and then calculate
oblique corrections, including one-loop contributions from the extended top
sector and the two Higgs doublets. We find regions of parameter space that give
acceptably small precision electroweak corrections and only mild fine tuning in
the Higgs potential, and also find that the mass of the lightest Higgs boson is
relatively unconstrained by precision electroweak data. The fermions from the
extended top sector can be as light as 1 TeV, and the W' can be as light as 1.8
TeV. We include an independent breaking scale for the B', which can still have
a mass as low as a few hundred GeV.Comment: 52 pages, 16 figure
X-boson cumulant approach to the periodic Anderson model
The Periodic Anderson Model (PAM) can be studied in the infinite U limit by
employing the Hubbard X operators to project out the unwanted states. We have
already studied this problem employing the cumulant expansion with the
hybridization as perturbation, but the probability conservation of the local
states (completeness) is not usually satisfied when partial expansions like the
Chain Approximation (CHA) are employed. Here we treat the problem by a
technique inspired in the mean field approximation of Coleman's slave-bosons
method, and we obtain a description that avoids the unwanted phase transition
that appears in the mean-field slave-boson method both when the chemical
potential is greater than the localized level Ef at low temperatures (T) and
for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in
the tex
Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC
Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by
a number of quantum gravity approaches which all indicate that the spacetime
dimensions get reduced at high energies. In this work, we formulate an
effective theory of electroweak interactions based upon the standard model,
incorporating the spontaneous reduction of space-dimensions at TeV scale. The
electroweak gauge symmetry is nonlinearly realized with or without a Higgs
boson. We demonstrate that the SDR ensures good high energy behavior and
predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV,
the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a
light Higgs boson can have induced anomalous gauge couplings from the TeV-scale
SDR. We find that the corresponding WW scattering cross sections become unitary
at TeV scale, but exhibit different behaviors from that of the 4d standard
model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM
Higgs boson(125GeV) via WW scattering; minor clarifications added; references
added; a concise companion is given in the short PLB letter arXiv:1301.457
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Torsional Alfven waves in stratified and expanding magnetic flux tubes
The effects of both density stratification and magnetic field expansion on
torsional Alfven waves in magnetic flux tubes are studied. The frequencies, the
period ratio P1/P2 of the fundamental and its first-overtone, and
eigenfunctions of torsional Alfven modes are obtained. Our numerical results
show that the density stratification and magnetic field expansion have opposite
effects on the oscillating properties of torsional Alfven waves.Comment: 13 pages, 7 figures, Accepted for publication in Astrophysics and
Space Scienc
Perfect state distinguishability and computational speedups with postselected closed timelike curves
Bennett and Schumacher's postselected quantum teleportation is a model of
closed timelike curves (CTCs) that leads to results physically different from
Deutsch's model. We show that even a single qubit passing through a
postselected CTC (P-CTC) is sufficient to do any postselected quantum
measurement, and we discuss an important difference between "Deutschian" CTCs
(D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the
present outcome of an experiment. Then, based on a suggestion of Bennett and
Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set
of linearly independent quantum states, and we prove that it is not possible
for such a party to distinguish a set of linearly dependent states. The power
of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still
applies to circuits using them regardless of their ability to conspire in
violating the uncertainty principle. We then discuss how different notions of a
quantum mixture that are indistinguishable in linear quantum mechanics lead to
dramatically differing conclusions in a nonlinear quantum mechanics involving
P-CTCs. Finally, we give explicit circuit constructions that can efficiently
factor integers, efficiently solve any decision problem in the intersection of
NP and coNP, and probabilistically solve any decision problem in NP. These
circuits accomplish these tasks with just one qubit traveling back in time, and
they exploit the ability of postselected closed timelike curves to create
grandfather paradoxes for invalid answers.Comment: 15 pages, 4 figures; Foundations of Physics (2011
Constraints on the Variation of the Fine Structure Constant from Big Bang Nucleosynthesis
We put bounds on the variation of the value of the fine structure constant
, at the time of Big Bang nucleosynthesis. We study carefully all light
elements up to Li. We correct a previous upper limit on estimated from He primordial abundance and we find interesting new
potential limits (depending on the value of the baryon-to-photon ratio) from
Li, whose production is governed to a large extent by Coulomb barriers. The
presently unclear observational situation concerning the primordial abundances
preclude a better limit than |\Delta \alpha/\alpha| \lsim 2\cdot 10^{-2}, two
orders of magnitude less restrictive than previous bounds. In fact, each of the
(mutually exclusive) scenarios of standard Big Bang nucleosynthesis proposed,
one based on a high value of the measured deuterium primordial abundance and
one based on a low value, may describe some aspects of data better if a change
in of this magnitude is assumed.Comment: 21 pages, eps figures embedded using epsfig macr
Local stochastic non-Gaussianity and N-body simulations
Large-scale clustering of highly biased tracers of large-scale structure has
emerged as one of the best observational probes of primordial non-Gaussianity
of the local type (i.e. f_{NL}^{local}). This type of non-Gaussianity can be
generated in multifield models of inflation such as the curvaton model.
Recently, Tseliakhovich, Hirata, and Slosar showed that the clustering
statistics depend qualitatively on the ratio of inflaton to curvaton power \xi
after reheating, a free parameter of the model. If \xi is significantly
different from zero, so that the inflaton makes a non-negligible contribution
to the primordial adiabatic curvature, then the peak-background split ansatz
predicts that the halo bias will be stochastic on large scales. In this paper,
we test this prediction in N-body simulations. We find that large-scale
stochasticity is generated, in qualitative agreement with the prediction, but
that the level of stochasticity is overpredicted by ~30%. Other predictions,
such as \xi independence of the halo bias, are confirmed by the simulations.
Surprisingly, even in the Gaussian case we do not find that halo model
predictions for stochasticity agree consistently with simulations, suggesting
that semi-analytic modeling of stochasticity is generally more difficult than
modeling halo bias.Comment: v3: minor changes matching published versio
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
Uptake of gases in bundles of carbon nanotubes
Model calculations are presented which predict whether or not an arbitrary
gas experiences significant absorption within carbon nanotubes and/or bundles
of nanotubes. The potentials used in these calculations assume a conventional
form, based on a sum of two-body interactions with individual carbon atoms; the
latter employ energy and distance parameters which are derived from empirical
combining rules. The results confirm intuitive expectation that small atoms and
molecules are absorbed within both the interstitial channels and the tubes,
while large atoms and molecules are absorbed almost exclusively within the
tubes.Comment: 9 pages, 12 figures, submitted to PRB Newer version (8MAR2K). There
was an error in the old one (23JAN2K). Please download thi
- …