12,880 research outputs found
Visualization of three dimensional data
The objective of research is to characterize patterns of errors observers make when relating the judged exocentric direction of a target presented on a perspective display to their egocentric sense of visual direction. This type of spatial task is commonly faced by operators of telerobotic systems when using a map-like display of their workspace to determine the visual location and orientation of objects seen by direct view. It is also essentially the same task as faced by an aircraft pilot using a cockpit perspective traffic display of his surrounding airspace to locate traffic out his windows. The results of the current study clearly show that the visual direction is a significantly biased metric of virtual space presented by flat panel perspective displays. Modeling and explanation of the causes of the observed biases will allow design of compensated perspective displays
Visual direction as a metric of virtual space
Two experiments examine the abilities of ten subjects to visualize directions shown on a perspective display. Subjects indicated their perceived directions by adjusting a head-mounted cursor to correspond to the direction depicted on the display. This task is required of telerobotic operators who use map-like pictures of their workspace to determine the direction of objects seen by direct view. Results show significant open loop judgment biases that may be composed of errors arising from misinterpretation of the map geometry and overestimation of gaze direction
Exocentric direction judgements in computer-generated displays and actual scenes
One of the most remarkable perceptual properties of common experience is that the perceived shapes of known objects are constant despite movements about them which transform their projections on the retina. This perceptual ability is one aspect of shape constancy (Thouless, 1931; Metzger, 1953; Borresen and Lichte, 1962). It requires that the viewer be able to sense and discount his or her relative position and orientation with respect to a viewed object. This discounting of relative position may be derived directly from the ranging information provided from stereopsis, from motion parallax, from vestibularly sensed rotation and translation, or from corollary information associated with voluntary movement. It is argued that: (1) errors in exocentric judgements of the azimuth of a target generated on an electronic perspective display are not viewpoint-independent, but are influenced by the specific geometry of their perspective projection; (2) elimination of binocular conflict by replacing electronic displays with actual scenes eliminates a previously reported equidistance tendency in azimuth error, but the viewpoint dependence remains; (3) the pattern of exocentrically judged azimuth error in real scenes viewed with a viewing direction depressed 22 deg and rotated + or - 22 deg with respect to a reference direction could not be explained by overestimation of the depression angle, i.e., a slant overestimation
Book Review: An Overview of Health Care Reform: A View of the Forest--An Introduction to Taft Strategic Atlas: U.S. Health Care Reform by Frederick I. Taft
Those interested in health law, who wish to follow and participate in the national debate, need a method of organizing the trees of definition, individual issues, and plans found in the forest of the debate. The cliche of not seeing the forest for the trees is reversed in this debate as we all can see the forest, but we cannot distinguish or truly discern its contents. To aid in understanding these issues, The Journal of Law and Health has taken the unusual step of reprinting a significant portion of a new book. The Editors believe that a traditional Book Review would not adequately serve this function. Frederick I. Taft has recently published Taft Strategic Atlas: U.S. Health Care Reform (Public Strategy Company, Cleveland, Ohio 1993). Its purpose is to provide an overview of the debate on health care reform
Comprehensive simulations of superhumps
(Abridged) We use 3D SPH calculations with higher resolution, as well as with
more realistic viscosity and sound-speed prescriptions than previous work to
examine the eccentric instability which underlies the superhump phenomenon in
semi-detached binaries. We illustrate the importance of the two-armed spiral
mode in the generation of superhumps. Differential motions in the fluid disc
cause converging flows which lead to strong spiral shocks once each superhump
cycle. The dissipation associated with these shocks powers the superhump. We
compare 2D and 3D results, and conclude that 3D simulations are necessary to
faithfully simulate the disc dynamics. We ran our simulations for unprecedented
durations, so that an eccentric equilibrium is established except at high mass
ratios where the growth rate of the instability is very low. Our improved
simulations give a closer match to the observed relationship between superhump
period excess and binary mass ratio than previous numerical work. The observed
black hole X-ray transient superhumpers appear to have systematically lower
disc precession rates than the cataclysmic variables. This could be due to
higher disc temperatures and thicknesses. The modulation in total viscous
dissipation on the superhump period is overwhelmingly from the region of the
disc within the 3:1 resonance radius. As the eccentric instability develops,
the viscous torques are enhanced, and the disc consequently adjusts to a new
equilibrium state, as suggested in the thermal-tidal instability model. We
quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08.
We characterise the eccentricity distributions in our accretion discs, and show
that the entire body of the disc partakes in the eccentricity.Comment: 18 pages (mn2e LaTeX), 14 figures, 5 tables, Accepted for publication
in MNRA
Stroboscopic Training Enhances Anticipatory Timing
International Journal of Exercise Science 5(4) : 344-353, 2012. The dynamic aspects of sports often place heavy demands on visual processing. As such, an important goal for sports training should be to enhance visual abilities. Recent research has suggested that training in a stroboscopic environment, where visual experiences alternate between visible and obscured, may provide a means of improving attentional and visual abilities. The current study explored whether stroboscopic training could impact anticipatory timing—the ability to predict where a moving stimulus will be at a specific point in time. Anticipatory timing is a critical skill for both sports and non-sports activities, and thus finding training improvements could have broad impacts. Participants completed a pre-training assessment that used a Bassin Anticipation Timer to measure their abilities to accurately predict the timing of a moving visual stimulus. Immediately after this initial assessment, the participants completed training trials, but in one of two conditions. Those in the Control condition proceeded as before with no change. Those in the Strobe condition completed the training trials while wearing specialized eyewear that had lenses that alternated between transparent and opaque (rate of 100ms visible to 150ms opaque). Post-training assessments were administered immediately after training, 10-minutes after training, and 10-days after training. Compared to the Control group, the Strobe group was significantly more accurate immediately after training, was more likely to respond early than to respond late immediately after training and 10 minutes later, and was more consistent in their timing estimates immediately after training and 10 minutes later
A rapid, chromatography-free route to substituted acridine–isoalloxazine conjugates under microwave irradiation
Microwave irradiation was applied to a sequence of condensation reactions from readily available 9-chloroacridines to provide a range of novel acridine–isoalloxazine conjugates. The combination of these two moieties, both of biological interest, was achieved by a chromatography free route
- …