44,062 research outputs found

    Spacetime structure and vacuum entanglement

    Full text link
    We study the role that both vacuum fluctuations and vacuum entanglement of a scalar field play in identifying the spacetime topology, which is not prescribed from first principles---neither in general relativity or quantum gravity. We analyze how the entanglement and observable correlations acquired between two particle detectors are sensitive to the spatial topology of spacetime. We examine the detector's time evolution to all orders in perturbation theory and then study the phenomenon of vacuum entanglement harvesting in Minkowski spacetime and two flat topologically distinct spacetimes constructed from identifications of the Minkowski space. We show that, for instance, if the spatial topology induces a preferred direction, this direction may be inferred from the dependence of correlations between the two detectors on their orientation. We therefore show that vacuum fluctuations and vacuum entanglement harvesting makes it, in principle, possible to distinguish spacetimes with identical local geometry that differ only in their topology

    Accurate polarization within a unified Wannier function formalism

    Full text link
    We present an alternative formalism for calculating the maximally localized Wannier functions in crystalline solids, obtaining an expression which is extremely simple and general. In particular, our scheme is exactly invariant under Brillouin zone folding, and therefore it extends trivially to the Gamma-point case. We study the convergence properties of the Wannier functions, their quadratic spread and centers as obtained by our simplified technique. We show how this convergence can be drastically improved by a simple and inexpensive ``refinement'' step, which allows for very efficient and accurate calculations of the polarization in zero external field.Comment: 9 pages, 4 figure

    Efficient Aggregation of Panel Qualitative Survey Data

    Get PDF
    Qualitative business survey data are used widely to provide indicators of economic activity ahead of the publication of official data. Traditional indicators exploit only aggregate survey information, namely the proportions of respondents who report “up” and “down”. This paper examines disaggregate or firm-level survey responses. It considers how the responses of the individual firms should be quantified and combined if the aim is to produce an early indication of official output data. Having linked firms’ categorical responses to official data using ordered discrete choice models, the paper proposes a statistically efficient means of combining the disparate estimates of aggregate output growth which can be constructed from the responses of individual firms. An application to firm-level survey data from the Confederation of British Industry shows that the proposed indicator can provide early estimates of output growth more accurately than traditional indicators.Survey Data; Indicators; Quantification; Forecasting; Forecast Combination

    Using information theory to detect rogue taxa and improve consensus trees

    Get PDF
    “Rogue” taxa of uncertain affinity can confound attempts to summarize the results of phylogenetic analyses. Rogues reduce resolution and support values in consensus trees, potentially obscuring strong evidence for relationships between other taxa. Information theory provides a principled means of assessing the congruence between a set of trees and their consensus, allowing rogue taxa to be identified more effectively than when using ad hoc measures of tree quality. A basic implementation of this approach in R recovers reduced consensus trees that are better resolved, more accurate, and more informative than those generated by existing methods. [Consensus trees; information theory; phylogenetic software; Rogue taxa.

    Development and Testing of a 2-D Transfer CCD

    Get PDF
    This paper describes the development, operation, and characterization of charge-coupled devices (CCDs) that feature an electrode structure that allows the transfer of charge both horizontally and vertically through the image area. Such devices have been termed two-dimensional (2-D) transfer CCDs (2DT CCDs), as opposed to the conventional devices, which might be called one-dimensional transfer CCDs, but in other respects are the same as conventional CCD devices. Batches of two different 2DT CCD test devices, featuring different electrode structures but with identical clocking operation in each case, were produced and tested. The methodology of 2-D charge transfer in each of the device types is described, followed by a presentation of test results from the new CCDs. The ability of both 2DT CCD transfer electrode schemes to successfully transfer charge in both horizontal and vertical directions in the image section of the devices has been proven, opening up potential new applications for 2DT CCD use

    Cataract, macular characteristics and assessing lens opacities

    Get PDF
    Age-related macular degeneration and cataract are very common causes of visual impairment in the elderly. Macular pigment optical density is known to be a factor affecting the risk of developing age-related macular degeneration but its behaviour due to light exposure to the retina and the effect of macular physiology on this measurement are not fully understood. Cataract is difficult to grade in a way which reflects accurately the visual status of the patient. A new technology, optical coherence tomography, which allows a cross sectional slice of the crystalline lens to be imaged has the potential to be able to provide objective measurements of cataract which could be used for grading purposes. This thesis set out to investigate the effect of cataract removal on macular pigment optical density, the relationship between macular pigment optical density and macular thickness and the relationship between cortical cataract density as measured by optical coherence tomography and other measures of cataract severity. These investigations found: 1) Macular pigment optical density in a pseudophakic eye is reduced when compared to a fellow eye with age related cataract, probably due to differences in light exposure between the eyes. 2) Lower macular pigment optical density is correlated with thinning of the entire macular area, but not with thinning of the fovea or central macula. 3) Central macular thickness decreases with age. 4) Spectral domain optical coherence tomography can be used to successfully acquire images of the anterior lens cortex which relate well to slit lamp lens sections. 5) Grading of cortical cataract with spectral domain optical coherence tomography instruments using a wavelength of 840nm is not well correlated with other established metrics of cataract severity and is therefore not useful as presented as a grading method for this type of cataract

    Biodiversity informatics: the challenge of linking data and the role of shared identifiers

    Get PDF
    A major challenge facing biodiversity informatics is integrating data stored in widely distributed databases. Initial efforts have relied on taxonomic names as the shared identifier linking records in different databases. However, taxonomic names have limitations as identifiers, being neither stable nor globally unique, and the pace of molecular taxonomic and phylogenetic research means that a lot of information in public sequence databases is not linked to formal taxonomic names. This review explores the use of other identifiers, such as specimen codes and GenBank accession numbers, to link otherwise disconnected facts in different databases. The structure of these links can also be exploited using the PageRank algorithm to rank the results of searches on biodiversity databases. The key to rich integration is a commitment to deploy and reuse globally unique, shared identifiers (such as DOIs and LSIDs), and the implementation of services that link those identifiers
    corecore