133 research outputs found

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data over the continent of Africa for nominal year 2015 at 30 meter resolution (GFSAD30AFCE). The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30AFCE data product uses two pixel-based supervised classifiers—Random Forest (RF) and Support Vector Machine (SVM)—and one object-oriented classifier—Recursive Hierarchical Image Segmentation (RHSEG)—to retrieve cropland extent from a combination of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) data and elevation derived from the Shuttle Radar Topography Mission (SRTM) Version 3 data products. Each GFSAD30AFCE GeoTIFF file contains a cropland extent layer that defines areas of cropland, non-cropland, and water bodies over a 10⁰ by 10⁰ area

    Early satellite cell communication creates a permissive environment for long-term muscle growth

    Get PDF
    Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR 206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation

    Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data

    Get PDF
    This paper aims to provide guidance to ecologists with limited experience in spatial analysis to help in their choice of techniques, It uses examples to compare methods of spatial analysis for ecological field data. A taxonomy of different data types is presented, including point- and area-referenced data, with and without attributes. Spatially and non-spatially explicit data are distinguished. The effects of sampling and other transformations that convert one data type to another are discussed; the possible loss of spatial information is considered. Techniques for analyzing spatial pattern, developed in plant ecology, animal ecology, landscape ecology, geostatistics and applied statistics are reviewed briefly and their overlap in methodology and philosophy noted. The techniques are categorized according to their output and the inferences that may be drawn from them, in a discursive style without formulae. Methods are compared for four case studies with field data covering a range of types. These are: 1) percentage cover of three shrubs along a line transect 2) locations and volume of a desert plant in a I ha area: 3) a remotely-sensed spectral index and elevation from 10(5) km(2) of a mountainous region; and 4) land cover from three rangeland types within 800 km2 of a coastal region. Initial approaches utilize mapping, frequency distributions and variance-mean indices. Analysis techniques we compare include: local quadrat variance, block, quadrat variance, correlograms, variograms, angular correlation, directional variograms, wavelets, SADIE, nearest neighbour methods, Ripley's L(t), and various landscape ecology metrics. Our advice to ecologists is to use simple visualization techniques for initial analysis, and subsequently to select methods that are appropriate for the data type and that answer their specific questions of interest, It is usually prudent to employ several different techniques

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology

    A balanced view of scale in spatial statistical analysis

    Get PDF
    Concepts of spatial scale, such as extent, grain, resolution, range, footprint, support and cartographic ratio are not interchangeable. Because of the potential confusion among the definitions of these terms, we suggest that authors avoid the term "scale" and instead refer to specific concepts. In particular, we are careful to discriminate between observation scales, scales of ecological phenomena and scales used in spatial statistical analysis. When scales of observation or analysis change, that is, when the unit size, shape, spacing or extent are altered, statistical results are expected to change. The kinds of results that may change include estimates of the population mean and variance, the strength and character of spatial autocorrelation and spatial anisotropy, patch and gap sizes and multivariate relationships, The First three of these results (precision of the mean, variance and spatial autocorrelation) can sometimes be estimated using geostatistical support-effect models. We present four case studies of organism abundance and cover illustrating some of these changes and how conclusions about ecological phenomena (process and structure) may be affected. We identify the influence of observational scale on statistical results as a subset of what geographers call the Modifiable Area Unit Problem (MAUP). The way to avoid the MAUP is by careful construction of sampling design and analysis. We recommend a set of considerations for sampling design to allow useful tests for specific scales of a phenomenon under study. We further recommend that ecological studies completely report all components of observation and analysis scales to increase the possibility of cross-study comparisons

    Spatially Explicit Analyses of Anopheline Mosquitoes Indoor Resting Density: Implications for Malaria Control

    Get PDF
    Background: The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes' habitats and behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be carefully evaluated. Methodology/Principal Findings: We used correlograms, directional variograms, Local Indicators of Spatial Association (LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in two dominant malaria vectors sampled with a 565 km grid over a 2500 km(2) area in the forest domain of Cameroon. SADIE analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa0.05, respectively). Correlograms and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices. Conclusions/Significance: Our study illustrates the importance of spatial analyses in unraveling the complex spatial patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control

    How do high glycemic load diets influence coronary heart disease?

    Get PDF
    • …
    corecore