7,807 research outputs found

    Gap and channelled plasmons in tapered grooves: a review

    Get PDF
    Tapered metallic grooves have been shown to support plasmons -- electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces -- across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channelled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment of unique properties that are highly suited to a broad range of cutting-edge nanoplasmonic technologies, including ultracompact photonic circuits, quantum-optics components, enhanced lab-on-a-chip devices, efficient light-absorbing surfaces and advanced optical filters, while additionally affording a niche platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range of applications they enable or improve. We cover the techniques that can fabricate tapered groove structures, in particular highlighting wafer-scale production methods, and outline the various photon- and electron-based approaches that can be used to launch and study GSPs and CPPs. We conclude with a discussion of the challenges that remain for further developing plasmonic tapered-groove devices, and consider the future directions offered by this select yet potentially far-reaching topic area.Comment: 32 pages, 34 figure

    Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    Get PDF
    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission

    Historical geography II: traces remain

    Get PDF
    The second report in this series turns to focus on the trace in relation to life-writing and biography in historical geography and beyond. Through attention to tracing journeys, located moments and listening to the presence of ghosts (Ogborn, 2005), this report seeks to highlight the range of different ways in which historical geographers have explored lives, deaths, and their transient traces through varied biographical terrains. Continuing to draw attention in historical geography to the darkest of histories, this piece will pivot on moments of discovering the dead to showcase the nuanced ways in which historical geography is opening doors into uncharted lives and unspoken histories

    Hard X-ray emitting Active Galactic Nuclei selected by the Chandra Multi-wavelength Project

    Full text link
    We present X-ray and optical analysis of 188 AGN identified from 497 hard X-ray (f (2.0-8.0 keV) > 2.7x10^-15 erg cm^-2 s^-1) sources in 20 Chandra fields (1.5 deg^2) forming part of the Chandra Multi-wavelength Project. These medium depth X-ray observations enable us to detect a representative subset of those sources responsible for the bulk of the 2-8 keV Cosmic X-ray Background. Brighter than our optical spectroscopic limit, we achieve a reasonable degree of completeness (77% of X-ray sources with counter-parts r'< 22.5 have been classified): broad emission line AGN (62%), narrow emission line galaxies (24%), absorption line galaxies (7%), stars (5%) or clusters (2%). We find that most X-ray unabsorbed AGN (NH<10^22 cm^-2) have optical properties characterized by broad emission lines and blue colors, similiar to optically-selected quasars from the Sloan Digital Sky Survey but with a slighly broader color distribution. However, we also find a significant population of redder (g'-i'>1.0) AGN with broad optical emission lines. Most of the X-ray absorbed AGN (10^22<NH<10^24 cm^-2) are associated with narrow emission line galaxies, with red optical colors characteristically dominated by luminous, early type galaxy hosts rather than from dust reddening of an AGN. We also find a number of atypical AGN; for instance, several luminous AGN show both strong X-ray absorption (NH>10^22 cm^-2) and broad emission lines. Overall, we find that 81% of X-ray selected AGN can be easily interpreted in the context of current AGN unification models. Most of the deviations seem to be due to an optical contribution from the host galaxies of the low luminosity AGN.Comment: 26 pages; 13 figures (7 color); accepted for publication in the Astrophysical Journa

    Multicentre randomised controlled trial comparing standard and high resolution optical technologies in colorectal cancer screening.

    Get PDF
    Background and objectives: The UK bowel cancer screening programme (BCSP) has been established for the early detection of colorectal cancer offering colonoscopy to patients screened positive by faecal occult blood tests. In this multisite, prospective, randomised controlled trial, we aimed to compare the performance of Standard Definition Olympus Lucera (SD-OL) with Scope Guide and the High Definition Pentax HiLine (HD-PHL). Patients and methods: Subjects undergoing a colonoscopy as part of the UK National BCSP at four UK sites were randomised to an endoscopy list run using either SD-OL or HD-PHL. Primary endpoints were polyp and adenoma detection rate (PDR and ADR, respectively) as well as polyp size, morphology and histology characteristics. Results: 262 subjects (168 males, mean age 66.3±4.3 years) were colonoscoped (133 patients with HD-PHL while 129 with SD-OL). PDR and ADR were comparable within the two optical systems. The HD-PHL group resulted in a PDR 55.6% and ADR 43.6%; the SD-OL group had PDR 56.6% and ADR 45.7%. HD-PHL was significantly superior to SD-OL in detection of flat adenomas (18.6% vs 5.2%, p<0.001), but not detection of pedunculated or sessile polyps. Patient comfort, use of sedation and endoscopist perception of procedural difficulty resulted similar despite the use of Scope Guide with SD-OL. Conclusion: PDR and ADR were not significantly different between devices. The high-resolution colonoscopy system HD-PHL may improve polyp detection as compared with standard resolution technology in detecting flat adenomas. This advantage may have clinically significant implications for missed lesion rates and post-colonoscopy interval colorectal cancer rates

    ‘Engage the World’: examining conflicts of engagement in public museums

    Get PDF
    Public engagement has become a central theme in the mission statements of many cultural institutions, and in scholarly research into museums and heritage. Engagement has emerged as the go-to-it-word for generating, improving or repairing relations between museums and society at large. But engagement is frequently an unexamined term that might embed assumptions and ignore power relationships. This article describes and examines the implications of conflicting and misleading uses of ‘engagement’ in relation to institutional dealings with contested questions about culture and heritage. It considers the development of an exhibition on the Dead Sea Scrolls by the Royal Ontario Museum, Toronto in 2009 within the new institutional goal to ‘Engage the World’. The chapter analyses the motivations, processes and decisions deployed by management and staff to ‘Engage the World’, and the degree to which the museum was able to re-think its strategies of public engagement, especially in relation to subjects,issues and publics that were more controversial in nature

    The well-aligned orbit of WASP-84b: evidence for disc migration

    Get PDF
    We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84b, a 0.70-MJupM_{\rm Jup} planet in a 8.52-day orbit around a G9V/K0V star, to be λ=0.3±1.7\lambda = 0.3 \pm 1.7^\circ. We obtain a true obliquity of ψ=14.8±8.0\psi = 14.8 \pm 8.0^\circ from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularised from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disc. This would make it the first short-orbit, giant planet to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (TeffT_{\rm eff} < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.Comment: 6 pages, 3 figures, 1 table, submitted to ApJ

    WASP-26b : a 1-Jupiter-mass planet around an early-G-type star

    Get PDF
    We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M and a radius of 1.34 ± 0.06 R and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy
    corecore