10,568 research outputs found

    A Reconfigurable Platform For Cognitive Radio

    Get PDF
    TodayÂżs rigid spectrum allocation scheme creates a spectrum scarcity problem for future wireless communications. Measurements show that a wide range of the allocated frequency bands are rarely used. Cognitive radio is a novel approach to improve the spectrum usage, which is able to sense the spectrum and adapt its transmission while coexisting with the licensed spectrum user. A reconfigurable radio platform is required to provide enough adaptivity for cognitive radio. In this paper, we propose a cognitive radio system architecture and discuss its possible implementation on a heterogeneous reconfigurable radio platform

    Self-referential Monte Carlo method for calculating the free energy of crystalline solids

    Get PDF
    A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient

    Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods

    Full text link
    Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamical simulations for two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving-grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test both neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and post-bounce evolution of a 13 solar mass star with Newtonian gravity and a 15 solar mass star with relativistic gravity.Comment: 23 pages, 13 figures, revised version, to appear in Ap

    Observation of electronic and atomic shell effects in gold nanowires

    Get PDF
    The formation of gold nanowires in vacuum at room temperature reveals a periodic spectrum of exceptionally stable diameters. This is identified as shell structure similar to that which was recently discovered for alkali metals at low temperatures. The gold nanowires present two competing `magic' series of stable diameters, one governed by electronic structure and the other by the atomic packing.Comment: 4 pages, 4 figure

    Direct calorimetric measurements of isothermal entropy change on single crystal W-type hexaferrites at the spin reorientation transition

    Full text link
    We report on the magnetic field induced isothermal entropy change, \Delta s(Ha, T), of W-type ferrite with CoZn substitution. Entropy measurements are performed by direct calorimetry. Single crystals of the composition BaCo0.62_0.62Zn1.38_1.38Fe16_16O27_27, prepared by the flux method, are measured at different fixed temperatures under an applied field perpendicular and parallel to the c axis. At 296 K one deduces a value of K1_1 = 8.7 \times 10^{4} J m−3^-3 for the first anisotropy constant, which is in good agreement with the literature. The spin reorientation transition temperature is estimated to take place between 200 and 220 K

    Anomalous Hall Effect in Ferromagnetic Semiconductors in the Hopping Transport Regime

    Full text link
    We present a theory of the Anomalous Hall Effect (AHE) in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity σxyAH\sigma_{xy}^{AH}. We show that σxyAH\sigma_{xy}^{AH} is proportional to the first derivative of the density of states ϱ(Ï”)\varrho(\epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that σxyAH\sigma_{xy}^{AH} depends on temperature as the longitudinal conductivity σxx\sigma_{xx} within logarithmic accuracy.Comment: 4 pages, 1 eps figure, final versio

    Numerical Simulation of an Electroweak Oscillon

    Full text link
    Numerical simulations of the bosonic sector of the SU(2)×U(1)SU(2)\times U(1) electroweak Standard Model in 3+1 dimensions have demonstrated the existence of an oscillon -- an extremely long-lived, localized, oscillatory solution to the equations of motion -- when the Higgs mass is equal to twice the W±W^\pm boson mass. It contains total energy roughly 30 TeV localized in a region of radius 0.05 fm. A detailed description of these numerical results is presented.Comment: 12 pages, 8 figures, uses RevTeX4; v2: expanded results section, fixed typo

    Metallic properties of magnesium point contacts

    Get PDF
    We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.Comment: 14 pages, 5 figure

    Remote sensing and hydrologic models for performance assessment in Sirsa Irrigation Circle, India

    Get PDF
    Irrigation management / Irrigation systems / Irrigation canals / Performance evaluation / Remote sensing / GIS / Models / Irrigated farming / Hydrology / Satellite surveys / Irrigation scheduling / Evapotranspiration / India
    • 

    corecore