5,815 research outputs found
Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles
We have studied the magnetic behavior of dextran-coated magnetite
(FeO) nanoparticles with median particle size \left=8 .
Magnetization curves and in-field M\"ossbauer spectroscopy measurements showed
that the magnetic moment of the particles was much smaller than the bulk
material. However, we found no evidence of magnetic irreversibility or
non-saturating behavior at high fields, usually associated to spin canting. The
values of magnetic anisotropy from different techniques indicate that
surface or shape contributions are negligible. It is proposed that these
particles have bulk-like ferrimagnetic structure with ordered A and B
sublattices, but nearly compensated magnetic moments. The dependence of the
blocking temperature with frequency and applied fields, ,
suggests that the observed non-monotonic behavior is governed by the strength
of interparticle interactions.Comment: 11 pages, 7 figures, 3 Table
Lattice Gauge Theories and the Heisenberg Antiferromagnetic Chain
We study the strongly coupled 2-flavor lattice Schwinger model and the
SU(2)-color QCD_2. The strong coupling limit, even with its inherent
nonuniversality, makes accurate predictions of the spectrum of the continuum
models and provides an intuitive picture of the gauge theory vacuum. The
massive excitations of the gauge model are computable in terms of spin-spin
correlators of the quantum Heisenberg antiferromagnetic spin-1/2 chain.Comment: Proceedings LATTICE99 (spin models), 3 page
Massless Decoupled Doublers: Chiral Yukawa Models and Chiral Gauge Theories
We present a new method for regularizing chiral theories on the lattice. The
arbitrariness in the regularization is used in order to decouple massless
replica fermions. A continuum limit with only one fermion is obtained in
perturbation theory and a Golterman-Petcher like symmetry related to the
decoupling of the replicas in the non-perturbative regime is identified. In the
case of Chiral Gauge Theories gauge invariance is broken at the level of the
regularization, so our approach shares many of the characteristics of the Rome
approach.Comment: 11 page
Steady-state spin densities and currents
This article reviews steady-state spin densities and spin currents in
materials with strong spin-orbit interactions. These phenomena are intimately
related to spin precession due to spin-orbit coupling which has no equivalent
in the steady state of charge distributions. The focus will be initially on
effects originating from the band structure. In this case spin densities arise
in an electric field because a component of each spin is conserved during
precession. Spin currents arise because a component of each spin is continually
precessing. These two phenomena are due to independent contributions to the
steady-state density matrix, and scattering between the conserved and
precessing spin distributions has important consequences for spin dynamics and
spin-related effects in general. In the latter part of the article extrinsic
effects such as skew scattering and side jump will be discussed, and it will be
shown that these effects are also modified considerably by spin precession.
Theoretical and experimental progress in all areas will be reviewed
A phase II study of paclitaxel in heavily pretreated patients with small-cell lung cancer.
The purpose of the study was to delineate the efficacy and toxicity of paclitaxel (Taxol, Bristol Myers Squibb) in the treatment of drug resistant small-cell lung cancer (SCLC). Patients with SCLC relapsing within 3 months of cytotoxic therapy received paclitaxel 175 mg m(-2) intravenously over 3 h every 3 weeks. The dose of paclitaxel was adjusted to the toxicity encountered in the previous cycle. Of 24 patients entered into the study, 24 and 21 were assessable for response and toxicity respectively. There were two early deaths and two toxic deaths. No complete and seven partial responses (29%) (95%CI 12-51%) were observed and five patients had disease stabilization. The median survival (n = 21) was 100 days. Life-threatening toxicity occurred in four patients; in others (non)-haematological toxicity was manageable. Paclitaxel is active in drug-resistant SCLC. Further investigation in combination with other active agents in this poor prognosis group is appropriate
Reproducibility of lymphovascular space invasion (LVSI) assessment in endometrial cancer
Aims Lymphovascular space invasion (LVSI) in endometrial cancer (EC) is an important prognostic variable impacting on a patient's individual recurrence risk and adjuvant treatment recommendations. Recent work has shown that grading the extent of LVSI further improves its prognostic strength in patients with stage I endometrioid EC. Despite this, there is little information on the reproducibility of LVSI assessment in EC. Therefore, we designed a study to evaluate interobserver agreement in discriminating true LVSI from LVSI mimics (Phase I) and reproducibility of grading extent of LVSI (Phase II). Methods and results Scanned haematoxylin and eosin (H&E) slides of endometrioid EC (EEC) with a predefined possible LVSI focus were hosted on a website and assessed by a panel of six European gynaecological pathologists. In Phase I, 48 H&E slides were included for LVSI assessment and in Phase II, 42 H&E slides for LVSI grading. Each observer was instructed to apply the criteria for LVSI used in daily practice. The degree of agreement was measured using the two-way absolute agreement average-measures intraclass correlation coefficient (ICC). Reproducibility of LVSI assessment (ICC = 0.64, P < 0.001) and LVSI grading (ICC = 0.62, P < 0.001) in EEC was substantial among the observers. Conclusions Given the good reproducibility of LVSI, this study further supports the important role of LVSI in decision algorithms for adjuvant treatment
Low-lying meson spectrum of large strongly coupled lattice QCD
We compute the low energy mass spectrum of lattice QCD in the large
limit. Expanding around a gauge-invariant ground state, which spontaneously
breaks the discrete chiral symmetry, we derive an improved strong-coupling
expansion and evaluate, for any value of , the masses of the low-lying
states in the unflavored meson spectrum. We then take the 't Hooft limit by
rescaling ; the 't Hooft limit is smooth and no arbitrary
parameters are needed. We find, already at the fourth order of the strong
coupling perturbation theory, a very good agreement between the results of our
lattice computation and the known continuum values.Comment: 43 pages, 1 figure. Minor corrections. One reference added in section
Isotopic Production Cross Sections in Proton-Nucleus Collisions at 200 MeV
Intermediate mass fragments (IMF) from the interaction of Al,
Co and Au with 200 MeV protons were measured in an angular range
from 20 degree to 120 degree in the laboratory system. The fragments, ranging
from isotopes of helium up to isotopes of carbon, were isotopically resolved.
Double differential cross sections, energy differential cross sections and
total cross sections were extracted.Comment: accepted by Phys. Rev.
- …