986 research outputs found

    Narrow-gap piezoelectric heterostructure as IR detector

    No full text
    Narrow-gap mercury cadmium telluride thin films grown by MBE and LPE methods onto various substrates (HgCdTe/Si, HgCdTe/GaAs, HgCdTe/CdZnTe) were investigated as a piezoelectric heterostructure for IR detection. The photoresponse, infrared transmittance spectra, parameters of the charge carrier transport, and mechanical properties were studied. Mechanical stresses at the layer-substrate interface were analyzed. HgCdTe-based infrared device is considered, operating in the middle (3–5 μm) infrared spectral range without cryogenic cooling to achieve performance level D* = 2.6 ⋅ 10⁹ ⋅ W⁻¹ cm ⋅Hz¹/² The possibility to detect infrared radiation is thought to be based on the possibility of the spatial separation of the non-equilibrium carriers in the strained semiconductor heterostructure with piezoelectric properties

    Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5

    Full text link
    The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure

    High-frequency hopping conductivity in the quantum Hall effect regime: Acoustical studies

    Full text link
    The high-frequency conductivity of Si delta-doped GaAs/AlGaAs heterostructures is studied in the integer quantum Hall effect (QHE) regime, using acoustic methods. Both the real and the imaginary parts of the complex conductivity are determined from the experimentally observed magnetic field and temperature dependences of the velocity and the attenuation of a surface acoustic wave. It is demonstrated that in the structures studied the mechanism of low-temperature conductance near the QHE plateau centers is hopping. It is also shown that at magnetic fields corresponding to filling factors 2 and 4, the doped Si delta- layer efficiently shunts the conductance in the two-dimensional electron gas (2DEG) channel. A method to separate the two contributions to the real part of the conductivity is developed, and the localization length in the 2DEG channel is estimated.Comment: 8pages, 9 figure

    Robust signatures of solar neutrino oscillation solutions

    Get PDF
    With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The favored solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is separated from the no-oscillation value of 1.0 by much more than the expected experimental error. The predicted range of the day-night difference in charged current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night effect for neutrino-electron scattering. A measurement by SNO of either a NC to CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of the currently allowed LMA neutrino parameter space. The global oscillation solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a prediction which can be used to test both the solar model and the neutrino oscillation theory. Only the LOW solution predicts a large day-night effect(< 42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3 sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to include 1496 days of Super-Kamiokande observation

    Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?

    Full text link
    We report high resolution polarized infrared studies of the quarter-filled spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <= 300K). Numerous new modes were detected below the temperature T_c=34K of the phase transition into a charge ordered nonmagnetic state accompanied by a lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice dimerization at T_c and show that some peculiarities of the low-temperature vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2, 1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as magnetic bound states and propose the alternative interpretation as folded phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure

    alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    Full text link
    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of α\alpha particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the α\alpha particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.Comment: 20 pages, 5 figures. Nuclear Physics A792 (2007) 2-1

    Using electronic structure changes to map the H-T phase diagram of alpha'-NaV2O5

    Full text link
    We report polarized optical reflectance studies of \alpha'-NaV2O5 as a function of temperature (4-45 K) and magnetic field (0-60 T). Rung directed electronic structure changes, as measured by near-infrared reflectance ratios \Delta R(H)=R(H)/R(H=0 T), are especially sensitive to the phase boundaries. We employ these changes to map out an H-T phase diagram. Topological highlights include the observation of two phase boundaries slightly below T_{SG}, enhanced curvature of the 34 K phase boundary above 35 T, and, surprisingly, strong hysteresis effects of both transitions with applied field.Comment: 4 pages, 3 figures, PRB accepte
    corecore