2,113 research outputs found

    Magnetofossil Spike During the Paleocene-Eocene Thermal Maximum: Ferromagnetic Resonance, Rock Magnetic, and Electron Microscopy Evidence from Ancora, New Jersey, USA

    Get PDF
    Previous workers identified a magnetically anomalous clay layer deposited on the northern United States Atlantic Coastal Plain during the Paleocene-Eocene Thermal Maximum (PETM). The finding inspired the highly controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR), isothermal and anhysteretic remanent magnetization, first order reversal curve, and transmission electron microscopy analyses of late Paleocene and early Eocene sediments in drillcore from Ancora, New Jersey. A novel paleogeographic analysis applying a recent paleomagnetic pole from the Faeroe Islands indicates that New Jersey during the initial Eocene had a ~6-9 degrees lower paleolatitude (~27.3 degrees for Ancora) and a more zonal shoreline trace than in conventional reconstructions. Our investigations of the PETM clay from Ancora reveal abundant magnetite nanoparticles bearing signature traits of crystals produced by magnetotactic bacteria. This result, the first identification of ancient biogenic magnetite using FMR, argues that the anomalous magnetic properties of the PETM sediments are not produced by an impact. They instead reflect environmental changes along the eastern margin of North America during the PETM that led to enhanced production and/or preservation of magnetofossils

    Instability of ion kinetic waves in a weakly ionized plasma

    Full text link
    The fundamental higher-order Landau plasma modes are known to be generally heavily damped. We show that these modes for the ion component in a weakly ionized plasma can be substantially modified by ion-neutral collisions and a dc electric field driving ion flow so that some of them can become unstable. This instability is expected to naturally occur in presheaths of gas discharges at sufficiently small pressures and thus affect sheaths and discharge structures.Comment: Published in Phys. Rev. E, see http://link.aps.org/doi/10.1103/PhysRevE.85.02641

    Some Implications of a Supersymmetric Model with R-Parity Breaking Bilinear Interactions

    Full text link
    We investigate a supersymmetric scenario where R-parity is explicitly broken through a term bilinear in the lepton and Higgs superfields in the superpotential. We show that keeping such a term alone can lead to trilinear interactions, similar to those that are parametrized by λ\lambda-and λ{\lambda}' in the literature, involving the physical fields. The upper limits of such interactions are predictable from the constraints on the parameter space imposed by the lepton masses and the neutrino mass limits. It is observed that thus the resulting trilinear interactions are restricted to values that are smaller than the existing bounds on most of the λ\lambda-and λ{\lambda}'-parameters. Some phenomenological consequences of such a scenario are discussed.Comment: 26 Pages, 6 Postscript figures, Latex. An additional set of references has been included. Typographic corrections have been made. Figures remain all unchanged. An additional typographic correction has been mad

    See-saw Enhancement of Lepton Mixing

    Full text link
    The see-saw mechanism of neutrino mass generation may enhance lepton mixing up to maximal even if the Dirac mass matrices of leptons have structure similar to that in the quark sector. Two sets of conditions for such an enhancement are found. The first one includes the see-saw generation of heavy Majorana masses for right-handed neutrinos and a universality of Yukawa couplings which can follow from the unification of neutrinos with new superheavy neutral leptons. The second set is related to lepton number symmetry of the Yukawa interactions in the Dirac basis of neutrinos. Models which realize these conditions have strong hierarchy or strong degeneration of Majorana masses of the right-handed neutrinos.Comment: 16 pages, plain TeX document, Institute for Advanced Study number AST 93/1

    Is Large Lepton Mixing Excluded?

    Full text link
    The original \bnum -(or νˉτ\bar{\nu}_{\tau}-) energy spectrum from the gravitational collapse of a star has a larger average energy than the spectrum for \bnue since the opacity of \bnue exeeds that of \bnum (or ντ\nu_{\tau}). Flavor neutrino conversion, \bnue \leftrightarrow \bnum, induced by lepton mixing results in partial permutation of the original \bnue and \bnum spectra. An upper bound on the permutation factor, p0.35p \leq 0.35 (99%\% CL) is derived using the data from SN1987A and the different models of the neutrino burst. The relation between the permutation factor and the vacuum mixing angle is established, which leads to the upper bound on this angle. The excluded region, sin22θ>0.70.9\sin^2 2\theta > 0.7 - 0.9, covers the regions of large mixing angle solutions of the solar neutrino problem: ``just-so" and, partly, MSW, as well as part of region of νeνμ\nu_{e} - \nu_{\mu} oscillation space which could be responsible for the atmospheric muon neutrino deficit. These limits are sensitive to the predicted neutrino spectrum and can be strengthened as supernova models improve.Comment: 20 pages, TeX file. For hardcopy with figures contact [email protected]. Institute for Advanced Study number AST 93/1

    Quasi-1D spin-1/2 Heisenberg magnets in their ordered phase: correlation functions

    Full text link
    We study weakly coupled antiferromagnetic spin chains in their ordered phase by combinining an exact solution of the single-chain problem with an RPA analysis of the interchain interaction. A single chain is described by a quantum Sine-Gordon model and dynamical staggered susceptibilities are determined by employing the formfactor approach to quantum correlation functions. We consider both antiferromagnetic order encountered in quasi-1D materials like KCuF3KCuF_3 and spin-Peierls order as found in CuGeO3CuGeO_3.Comment: 16 pages of revtex, 12 figure

    Probing the neutrino mass hierarchy and the 13-mixing with supernovae

    Get PDF
    We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals from the gravitational collapses of stars. The observables (characteristics of the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13} and sign[Delta m^2_{13}] have been calculated. They include the ratio of average energies of the spectra, r_E = /, the ratio of widths of the energy distributions, r_Gamma, the ratios of total numbers of nu_e and antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We construct and analyze scatter plots which show the predictions for the observables for different intervals of sin^2 theta_{13} and signs of Delta m^2_{13}, taking into account uncertainties in the original neutrino spectra, the star density profile, etc.. Regions in the space of observables r_E, r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of sin^2 theta_{13} can be identified or discriminated. We elaborate on the method of the high energy tails in the spectra of events. The conditions are formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from below, (iii) restricted from above. We comment on the possibility to determine sin^2 theta_{13} using the time dependence of the signals due to the propagation of the shock wave through the resonance layers of the star. We show that the appearance of the delayed Earth matter effect in one of the channels (nu_e or antinu_e) in combination with the undelayed effect in the other channel will allow to identify the shock wave appeareance and determine the mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos corrected. Version to appear in JCA

    Phenomenology of Maximal and Near-Maximal Lepton Mixing

    Get PDF
    We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other (xx=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter ϵ12sin2θex\epsilon\equiv1-2\sin^2\theta_{ex} and quantify the present experimental status for ϵ<0.3|\epsilon|<0.3. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for 10810^{-8} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2. In the mass ranges \Delta m^2\gsim 1.5\times10^{-5} eV2^2 and 4×10104\times10^{-10} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2 the full interval ϵ<0.3|\epsilon|<0.3 is allowed within 4σ\sigma(99.995 % CL). We suggest ways to measure ϵ\epsilon in future experiments. The observable that is most sensitive to ϵ\epsilon is the rate [NC]/[CC] in combination with the Day-Night asymmetry in the SNO detector. With theoretical and statistical uncertainties, the expected accuracy after 5 years is Δϵ0.07\Delta \epsilon\sim 0.07. We also discuss the effects of maximal and near-maximal νe\nu_e-mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay.Comment: 49 pages Latex file using RevTeX. 16 postscript figures included. ( Fig.2 and Fig.4 bitmapped for compression,better resolution at http://ific.uv.es/~pppac/). Improved presentation: some statements included and labels added in figures. Some misprint corrected. Final version to appear in Phys. Rev D. Report no: IFIC/00-40, IASSNS-HEP-00-5

    Correlations of Solar Neutrino Observables for SNO

    Full text link
    Neutrino oscillation scenarios predict correlations, and zones of avoidance, among measurable quantities such as spectral energy distortions, total fluxes, time dependences, and flavor content. The comparison of observed and predicted correlations will enhance the diagnostic power of solar neutrino experiments. A general test of all presently-allowed (two neutrino) oscillation solutions is that future measurements must yield values outside the predicted zones of avoidance. To illustrate the discriminatory power of the simultaneous analysis of multiple observables, we map currently allowed regions of neutrino masses and mixing angles onto planes of quantities measurable with the Sudbury Neutrino Observatory (SNO). We calculate the correlations that are predicted by vacuum and MSW (active and sterile) neutrino oscillation solutions that are globally consistent with all available neutrino data. We derive approximate analytic expressions for the dependence of individual observables and specific correlations upon neutrino oscillations parameters. We also discuss the prospects for identifying the correct oscillation solution using multiple SNO observables.Comment: Accepted Phys Rev D. Included new figure. Related material http://www.sns.ias.edu/~jn

    Neutrino - Modulino Mixing

    Full text link
    We suggest the existence of a light singlet fermion, SS, which interacts with observable matter only via a Planck mass suppressed interaction: m3/2/MP\sim m_{3/2}/M_P, where m3/2m_{3/2} is the supergravity gravitino mass. If the mass of the singlet equals m3/22/MP\sim m_{3/2}^2/M_P, then νeS\nu_e \to S resonance conversion solves the solar neutrino problem or leads to observable effects. The νS\nu S-mixing changes supernova neutrino fluxes and has an impact on the primordial nucleosynthesis. The singlet SS can originate as the supersymmetric partner of the moduli fields in supergravity or low energy effective theory steaming from superstrings. The νS\nu S-mixing may be accompanied by observable R-parity breaking effects.Comment: Text compressed to 4 pages and references added. Version to appear in Phys. Rev. Let
    corecore