201 research outputs found

    Critical assessment of two-qubit post-Markovian master equations

    Get PDF
    A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.Comment: 7 pages, 1 figure, RevTeX4. Close to published versio

    Non-perturbative treatment of open-system multi-time expectation values in Gaussian bosonic environments

    Full text link
    We determine the conditions for the equivalence between the multi-time expectation values of a general finite-dimensional open quantum system when interacting with, respectively, an environment undergoing a free unitary evolution or a discrete environment under a free evolution fixed by a proper Gorini-Kossakowski-Lindblad-Sudarshan generator. We prove that the equivalence holds if both environments are bosonic and Gaussian and if the one- and two-time correlation functions of the corresponding interaction operators are the same at all times. This result leads to a non-perturbative evaluation of the multi-time expectation values of operators and maps of open quantum systems interacting with a continuous set of bosonic modes by means of a limited number of damped modes, thus setting the ground for the investigation of open-system multi-time quantities in fully general regimes.Comment: 16 pages, 1 figure. Submission to a special issue of 'Open Systems and Information Dynamics' devoted to the memory of Prof. Andrzej Kossakowsk

    Unusual presentation of fatal disseminated varicella zoster virus infection in a patient with lupus nephritis: A case report

    Get PDF
    Background: The risk of life-threatening complications, such as visceral disseminated varicella zoster virus (VZV) infection, is greater in immunosuppressed individuals, such as systemic lupus erythematosus (SLE) patients. Case presentation: Here, a case is reported of a Caucasian woman diagnosed with lupus nephritis and anti-phospholipid syndrome, who was subjected to mycophenolate mofetil and high-dose steroid remission-induction therapy. Two months later she developed abdominal pain followed by a fatal rapid multi-organ failure. As no typical skin rashes were evident, death was initially attributed to catastrophic anti-phospholipid syndrome. However, autopsy and virological examinations on archival material revealed a disseminated VZV infection. Conclusions: Overall, this case highlights the importance of having a high clinical suspicion of fatal VZV infections in heavily immunosuppressed SLE patients even when typical signs and symptoms are lacking

    Detrimental Impact of Interferon-Based Regimens for Chronic Hepatitis C on Vitamin D/Parathyroid Hormone Homeostasis

    Get PDF
    Background: Both the anti-infective and anti-inflammatory properties of vitamin D, an essential hormone of calcium homeostasis, have ample support in the literature. The high rates of vitamin D deficiency among patients with chronic hepatitis C are also well known. That supplementation with vitamin D may boost sustained viral response rates in vitamin D deficient, hepatitis C virus (HCV) infected patients undergoing Interferon-alpha (IFN) treatment, on the other hand, is controversial. Surprisingly, studies considering in this latter setting what are the effects of IFN treatment (with or without vitamin D supplementation) on the other major regulator of mineral metabolism, i.e. the Parathyroid hormone (PTH), are lacking. Aim: Evaluate the impact of interferon-based treatment against HCV (±cholecalciferol supplementation) on vitamin D and PTH homeostasis. Methods: A series of 40 consecutive patients received pegylated IFN plus ribavirin to treat chronic hepatitis C. At the discretion of their physician, some of them (N. = 27) received vitamin D supplementation while others did not (N. = 13). All had measured plasma 25-hydroxycholecalciferol and PTH concentrations at baseline, at completion of the 4th (TW4) and 12th treatment week (TW12) and at 24 weeks after the end of therapy (SVR24). Results: Plasma PTH concentration increased significantly from baseline during treatment, raising to 44.8 [30.7-57.2] pg/mL at TW4 (p=0.01), 47.0 [37.1-63.2] pg/mL at TW12 (p=0.006) to return to baseline levels in the follow-up (34.5 [27.6-43.0]; p=0.16). The proportion of patients who satisfied criteria for hyperparathyroidism was higher at TW12 (N=10, 25%) than at TW4 (N=6, 15%). There was no statistical correlation between vitamin D and PTH blood levels (ρ=-0.07; p=0.65). Conclusion: An increase in plasma PTH occurs systematically during IFN treatment of HCV patients and cannot be prevented by vitamin D supplementation

    Collisional relaxation of Feshbach molecules and three-body recombination in 87Rb Bose-Einstein condensates

    Full text link
    We predict the resonance enhanced magnetic field dependence of atom-dimer relaxation and three-body recombination rates in a 87^{87}Rb Bose-Einstein condensate (BEC) close to 1007 G. Our exact treatments of three-particle scattering explicitly include the dependence of the interactions on the atomic Zeeman levels. The Feshbach resonance distorts the entire diatomic energy spectrum causing interferences in both loss phenomena. Our two independent experiments confirm the predicted recombination loss over a range of rate constants that spans four orders of magnitude.Comment: 4 pages, 3 eps figures (updated references

    Experimental investigation of initial system-environment correlations via trace-distance evolution

    Get PDF
    The trace distance between two states of an open quantum system quantifies their distinguishability and, for a fixed environmental state, can increase above its initial value only in the presence of initial system-environment correlations. We provide experimental evidence of such a behavior. In our all-optical apparatus, we exploit spontaneous parametric down conversion as a source of polarization entangled states and a spatial light modulator to introduce in a general fashion correlations between the polarization and the momentum degrees of freedom, which act as environment

    Controlling a magnetic Feshbach resonance with laser light

    Full text link
    The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additional flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do

    Local Detection of Quantum Correlations with a Single Trapped Ion

    Full text link
    As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios this is not feasible since only some of the subsystems can be controlled and measured. Such cases can be treated as open quantum systems interacting with an inaccessible environment. Initial system-environment correlations play a fundamental role for the dynamics of open quantum systems. Following a recent proposal, we exploit the impact of the correlations on the open-system dynamics to detect system-environment quantum correlations without accessing the environment. We use two degrees of freedom of a trapped ion to model an open system and its environment. The present method does not require any assumptions about the environment, the interaction or the initial state and therefore provides a versatile tool for the study of quantum systems.Comment: 6 Pages, 5 Figures + 6 Pages, 1 Figure of Supplementary Materia

    Non-monotonic population and coherence evolution in Markovian open-system dynamics

    Full text link
    We consider a simple microscopic model where the open-system dynamics of a qubit, despite being Markovian, shows features which are typically associated to the presence of memory effects. Namely, a non monotonic behavior both in the population and in the coherence evolution arises due to the presence of non-secular contributions, which break the phase covariance of the Lindbladian (semigroup) dynamics. We also show by an explicit construction how such a non-monotonic behaviour can be reproduced by a phase covariant evolution, but only at the price of inserting some state-dependent memory effects.Comment: Submitted to the proceedings of the 684. WE-Heraeus-Seminar "Advances in open systems and fundamental tests of quantum mechanics
    • 

    corecore