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A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system
coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)].
For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is
always legitimate and physical. Here we extend such a situation to the case of two qubits, only one of which
experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction
of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity
of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically
derived models for evolutions occurring outside the Markovian framework.

DOI: 10.1103/PhysRevA.85.032120 PACS number(s): 03.65.Yz, 03.67.−a, 42.50.Lc

I. INTRODUCTION

The study of open quantum systems, which has been
extensive over the years [1,2], is interesting for many stim-
ulating reasons. First, the occurrence of uncontrolled system-
environment interactions constitutes a fundamental obstacle
to the realization of reliable control over quantum devices,
and the challenge is to design practical schemes for quenching
such unwanted couplings. Second, more fundamentally, the
dynamics of open quantum systems offer a way to access and
explore the way genuine quantum features are smeared out
into classical ones [3].

Very often, the formal analysis of an open quantum dynam-
ics is performed by invoking the use of two simplifications: the
weak system-environment coupling and the forgetful nature
of the environmental system [4,5]. This defines the so-called
Markovian framework, which is often useful for the grasping
of a qualitative understanding of a system-environment evo-
lution and sometimes even physically justified by particularly
favorable working conditions. Notwithstanding its pragmatic
handiness, it should be kept in mind that Markovianity is
only an approximation, and the conditions for its application
frequently do not match the reality of a given physical
situation [6]. The increasing awareness of the limitations
in the Markovian framework, the identification of explicit
cases of non-Markovian system-environment evolution, and
the ability to experimentally simulate structured reservoirs
with inherent nontrivial dynamics [7] have triggered the study
of open quantum systems beyond the Markovian regime [8].
A considerable number of techniques, both analytic and
numerical, have been put forward with the goal of accurately
tackling non-Markovian evolution [1,9–12]. Among them,
post-Markovian (PM) master equations have been proposed as
a means to interpolate between fully Markovian Lindblad-like
approaches and the exact Kraus-operator picture of the reduced
dynamics of a system coupled to its environment [13,14],
offering clear conditions for physicality of the dynamics. This

circumstance is particularly relevant if one considers that the
prerequisites for meaningful evolution (i.e., the dynamical
map evolving the density operator has to be trace preserving,
positive, and completely positive) are often violated by
dynamics arising from a non-Markovian master equation.

In this paper we show how even a well-tested tool as
the post-Markovian master equation retains a strong limit
of applicability hidden in it. We consider a qubit system
embedded in an environment whose dynamics is meaningfully
described by a post-Markovian master equation and an
ancillary qubit, completely decoupled from the system and
the environment, whose unitary evolution is ruled by a von
Neumann equation. As the evolutions of system and ancilla
are independent, the master equation of the enlarged system
containing the system and the ancilla can be naturally written
as the sum of the generators of the two disjointed dynamical
evolutions. We show how the solution of such a master
equation breaks positivity and creates correlations between
the two noninteracting qubits even when initially prepared
in a factorized state. Following the formulation of Shabani
and Lidar, we go beyond the intuitive approach and derive a
post-Markovian master equation which accounts ab initio of
the ancillary degree of freedom. Such a master equation for
the extended two-qubit systems fails to describe a completely
positive or even only positive dynamics, as in the previous case.
The loss of positivity of the two extended evolutions occurs
under the same conditions for which the physical dynamics of
the single qubit-system is guaranteed [15]. As such our results
shed light on the limit of validity of post-Markovian master
equations and warn against the hazard of naive extensions of
non-Markovian equations of motion.

The remainder of the paper is organized as follows.
Section II outlines the PM master equation and its derivation
that will be focus of this paper. Section III deals with an
intuitive approach to introducing an ancillary system into the
evolution and examines the loss of physicality in the map. In
Sec. IV we employ the methods of Shibani-Lidar and derive the

032120-11050-2947/2012/85(3)/032120(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.71.020101
http://dx.doi.org/10.1103/PhysRevA.85.032120


S. CAMPBELL et al. PHYSICAL REVIEW A 85, 032120 (2012)

associated PM master equation explicitly including the ancilla
in the derivation and show this also fails to give a physical
map. In Sec. V we discuss the steps necessary to resolve the
loss of physicality when introducing an ancillary system. In
Sec. VI we draw some final conclusions. Finally, we delegate
to two Appendices the more technical steps involved in the
calculations that we present.

II. POST-MARKOVIAN MASTER EQUATION

It is instrumental for the second part of our analysis
and pedagogically quite useful to briefly remind readers of
the key steps needed in order to derive the PM master
equation proposed in [14]. The basic observation is that
the operator-sum representation of a system-environment
dynamics corresponds to making a single measurement on the
environment at time t . In such a measurement picture, a master
equation in the Lindblad form can be seen as a continuous
series of measurements performed at infinitely closely spaced
times [14]. The PM approach interpolates such extremal
cases: At time t = 0, system and environment start their joint
evolution until, at a random time t ′ < t , a measurement on
the bath is performed and the state of the system becomes
�(t ′)ρ(0), where �(t ′) is a one-parameter map independent
of the final time t . The measurement resets the state of the
environment while the joint system-environment evolution
proceeds from then until time t , when the final measurement
is performed. The probability for the extra environmental
measurement at t ′ to occur depends on the memory properties
of the environment itself, which are accounted for by the
introduction of a memory kernel k(t ′,t). The final state of
the system is thus obtained by averaging out over the different
random times as ρ(t) = ∑

random t′ k(t ′,t)�(t − t ′)ρ(t ′).
The derivation proceeds with the discretization of the

interval of time [0,t] into segments of equal length ε. By
evaluating the difference of the density matrix operator at two
consecutive instant of times, dividing for ε, and performing
the limit for ε→0, we obtain the master equation

ρ̇ =
∫ t

0
dt ′[k(t ′,t)�(t ′)∂(t−t ′) + ∂tk(t ′,t)�(t ′)]ρ(t − t ′).

In the spirit of perturbation theory, the relation ρ(t − t ′) =
�(t − t ′)ρ(0) is used inside the integral (meaning that in
the first order the map describing the dynamics belongs to
a one-parameter family). Assuming that the inverse of the map
�(t − t ′) exists, one can write ρ(0) = �−1(t − t ′)ρ(t − t ′),
and, with the assumption that the memory kernel function
depends on one parameter only [k(t ′,t) = k(t ′)], the master
equation above becomes

∂ρ(t)

∂t
=

∫ t

0
dt ′k(t ′)�(t ′)

∂�(t − t ′)
∂(t − t ′)

�−1(t − t ′)ρ(t − t ′).

(1)

In order to obtain a master equation for each particular
problem, one needs to specify the form of the map �(t). In
the case of a Markovian superoperator �(t ′) = eLt ′ , the PM
master equation attains the form

dρ(t)

dt
= L̂

∫ t

0
dt ′k(t ′)eLt ′ρ(t − t ′). (2)

We consider here a qubit interacting in a dissipative fashion
with a nonzero temperature bosonic bath, the Markovian
Liouvillian L̂ being in the form

L̂ρ = γ n
[
σ̂+ρσ̂−− 1

2 {σ̂−σ̂+,ρ}] + γ (n + 1)

× [
σ̂−ρσ̂+− 1

2 {σ̂+σ̂−,ρ}], (3)

where σ̂± are the spin raising and lowering operators. The
memory function of the bath k(t) is taken of exponential form
k(t) = χexp(−χt). The map �̂(t) that arises from Eq. (2)
with such a choice of the Liouvillian superoperator was
considered extensively in Refs. [15] and was demonstrated to
be completely positive for all range of parameters. Therefore
the master equation in Eq. (2) gives a physically meaningful
evolution for a single damped qubit.

III. INTRODUCING AN ANCILLARY SYSTEM:
INTUITIVE APPROACH

Here we consider the extended system comprising a
damped qubit, whose evolution follows the PM master
equation in Eq. (2), and an ancillary qubit evolving in
time unitarily and independently from the first qubit. The
introduction of ancillary degrees of freedom is useful in many
applications, for example, in view of quantifying the degree
of non-Markovianity of the dynamics of the system [16] (this
can be done by monitoring the evolution of the entanglement
between the system and ancilla) and for inferring the specifics
of the system-environment interaction [17] (one can access the
property of an environment affecting an inaccessible system
by means of continuous measurements on an ancilla).

To derive the master equation describing the extended
system, we use the following line of reasoning. The starting
point of a microscopic approach is the von Neumann equation
for the density operator of the system, ancilla, and environ-
ment, ρ̇SAE = −i[ĤSE ⊗ 1̂A + ĤA ⊗ 1̂SE,ρSAE], containing a
Hamiltonian term coupling the system and the environment
HSE, from which decoherence of the system arises, and an
independent ancillary Hamiltonian term ĤA. By tracing out
the environmental degrees of freedom, one obtains

ρ̇SA = −iTrE[ĤSE ⊗ 1̂A,ρSAE] − i[ĤA ⊗ 1̂S,ρSA],

meaning that the generator of the environment-induced system
evolution and the one of the ancillary evolution simply sum
up. As the PM generator accounts for the description of the
dynamics of the single damped qubit, the most natural way to
construct the master equation for the two qubits is to substitute
the term corresponding to the dissipative dynamics with the
PM generator of Eq. (2), thus obtaining

dρ(t)

dt
= −i[Ĥ ,ρ(t)]+L̂S ⊗ 1̂A

∫ t

0
dt ′k(t ′)eL̂S t ′⊗ 1̂Aρ(t − t ′),

(4)

with Ĥ = ĤA ⊗ 1̂S and ρ(t) the density matrix for the system-
ancilla pair. A first check supporting the reasonableness of the
previous equation is that when tracing out over the ancilla
(system) degree of freedom, we obtain the PM equation of
the damped system qubit (von Neumann equation for the
ancilla). In order to be meaningful this master equation has to
be trace preserving and has to give rise to a physical dynamics,
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meaning that ρ(t) has to be a density matrix (trace 1, Hermitian,
and positive) at any time, and the map associated has to be
completely positive. We choose the following form for the
ancillary Hamiltonian

ĤA = J σ̂A
z , (5)

where J is the frequency split between the logical states of the
ancilla, and σ̂A

z is the corresponding z Pauli operator. In order
to solve Eq. (4), we decompose ρ(t) in terms of the damping
basis [18] of L̂, as

ρ(t) =
∑
i,j

cij (t)σ̂ S
i ⊗ σ̂A

j (i,j = 0,z,±), (6)

where σ̂
A,S
i are the right eigenoperators of L̂S such that

L̂S σ̂
S
i = λi σ̂

S
i (with σ̂ 0 = (1/2)[1̂ − σ̂ z/(2n + 1)]) and cij (t)

are time-dependent coefficients. The choice of such an operator
basis for the density matrix is very convenient, as the action
of L̂S on each element of the decomposition of ρ(t) simply
depends on the eigenvalues associated with the damping
operators. Moreover, it turns out that the Hamiltonian of
Eq. (5) is diagonal with respect to the damping basis. By
introducing the dual of the damping basis [18] (defined as
the solution of the orthonormality condition Tr[ ˇ̂σ i σ̂ j ] = δij ,
with δij the Kronecker delta function), it is possible to obtain
a set of 16 equations for the time-dependent coefficients
cij (t). These equations can then be solved by using Laplace
transform techniques. Once we have at hand the solution
of the master equation, we can analyze its physicality, i.e.,
whether the associated map is completely positive and ρ(t) is
a density operator at all times. Moreover, it is interesting to
compare the solution of this master equation ρ(t) for initially
factorized states with the tensor product of the two independent
system-ancilla evolutions ρS(t) ⊗ ρA(t), obtained solving the
PM master equation for the system in Eq. (2) and von
Neumann equation for the ancilla ρ̇A(t)= −i [ĤA,ρA(t)],
respectively. To this aim we make use of the trace distance

T (ρ,ϕ)= 1
2 Tr[|ρ − ϕ|] (here |A| =

√
A† A is the trace norm

of an arbitrary matrix A), which defines a distance between
the density matrices ρ and ϕ.

We start our analysis by considering the system-ancilla
initial state ρ(0) = |0〉S ⊗ (|0〉 + |1〉)A/

√
2. Figure 1(a) shows

the trace distance (dashed line) between ρ(t), the solution
of Eq. (4), and ρS(t) ⊗ ρA(t) and the time evolution of the

smallest eigenvalue of ρ(t) (solid line), for the set of parameters
n = 1, χ = γ = J/2. As we can see, not only does ρ(t) differ
substantially from the meaningful expected solution but also
violates positivity, being that its smallest eigenvalue is always
negative. This rather surprising result implies that the matrix
ρ(t) ceases to be a density matrix and that Eq. (4) fails to
describe a physical dynamics. As the complete positivity of
the map of the single damped qubit [derived by Eq. (2)] is
guaranteed for any values of the parameters n, γ , and χ , we
ascribe such a dramatic implication to the introduction of the
ancillary term and check whether there is a regime of the J

parameter in which physicality is saved. To this purpose we
investigate the evolution of the same system-ancilla factorized
initial state as a function of the J parameter. Figure 1(b),
showing the lowest eigenvalue of the matrix ρ(t), demonstrates
that positivity is broken even for a small value of J . This result
leaves no doubt about the lack of physicality of the evolution
described by the Eq. (4). For the sake of completeness we
include the check of the (more restrictive) complete positivity
condition. In order to test if a map is CP, one can use Choi’s
theorem [19] which states that a map � is CP if the matrix
C� = ∑

ij Eij ⊗ �(Eij ) is positive, where Eij is a matrix with
1 in the ij th entry and zeros everywhere else. The map � can
be determined from the analytical solution (see Appendix A).
Figure 1(c) presents the lowest eigenvalue arising from C�

as a function of time and J , and confirms that the map loses
complete positivity whenever J �= 0, as expected.

We notice that the evolution map associated with
Eq. (4) is not given by the tensor product of two individual
evolution maps of the system and the ancilla, as one would
have hoped for. Indeed the overall evolution map is not
obtained as the composition of the completely positive maps
individually generated by the two terms at the right hand
side of Eq. (4), despite the fact that they do commute and
have a common set of time-independent eigenoperators. In
the attempt to trace back to the reasons of the break of
positivity and gain insight on such a fictitious evolution, we
can calculate the local in-time generator of the dynamics.
This corresponds to considering the operator ρ(t) as the
solution of the equation ρ̇(t) = KTCL(t)ρ(t); therefore since
we have that ρ(t) = �(t)ρ(0), the local in-time generator will
be equal to KTCL(t) = �̇(t)�(t)−1. The expression of KTCL(t),
where TCL represents time convolutionless, presented in
Appendix A, demonstrates how the addition of the commutator

(a) (b) (c) (d)

FIG. 1. (Color online) (a) Trace distance T (dashed line) and lowest eigenvalue εl (solid line) of the mapped matrix ρ(t) solution of Eq. (4)
against the rescaled interaction time t̃ = J t for the initial state ρ(0) = |0〉S ⊗ (|0〉 + |1〉)A/

√
2 and J = 2. (b) Lowest eigenvalue εl of the

matrix ρ(t) as a function of rescaled time τ = γ t and the ratio R = J/γ for the same initial state of panel (a). (c) Plot of the lowest eigenvalue
εcl of the Choi matrix associated with the dynamics of ρ(t). (d) Lowest eigenvalue εl of the matrix ρ(t) solving Eq. (7). In all the panels we
have taken n = 1 with χ = γ .
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with the ancillary Hamiltonian leads to the appearance of terms
(of the form σ̂A

i ⊗ σ̂B
j ) correlating the two independent qubits.

In this light the trace distance plotted in Fig. 1(a) not only
describes how far the evolution map �(t) is from its factorized
counterpart, but also accounts for such unphysical correlations
created between the qubits.

IV. INTRODUCING AN ANCILLARY SYSTEM:
SHABANI-LIDAR APPROACH

As the system dissipator and the ancillary unitary term
act on two different Hilbert spaces, the addition of the
two independent generators appears as the most natural
way to build the master equation of the extended system.
Nevertheless, one may ask whether the results obtained are
consequences of a possibly naive approach, and an alternative
description can cure the physicality of the evolution. Here
we include the ancillary system and its Hamiltonian evolution
among the building blocks of the construction of the PM master
equation.

We take Eq. (1) and consider � as the composition of the
Markovian dissipative generator �S(t) = eL̂S t acting on the
system and the unitary map �A(t)(ρ) = UA(t)(ρ)U †

A(t), with
UA(t) = e−i HAt generated by the Hamiltonian HA. With this
substitution and performing the necessary calculations, we
obtain the following master equation:

d

dt
ρ(t) = L̂S ⊗ 1̂A

∫ t

0
dt ′k(t ′)eL̂S t ′e−i HAt ′ρ(t − t ′)ei HAt ′

−i

[
1̂S ⊗ HA,

∫ t

0
dt ′k(t ′)eL̂S t ′e−i HAt ′ρ(t−t ′)ei HAt ′

]
.

(7)

We start checking the positivity of the evolution of the initial
state ρ(0) = |0〉S ⊗ (|0〉 + |1〉)A/

√
2 as a function of the J

parameter. The plot in Fig. 1(d) shows that positivity is broken
also in this case. However, there is an even more important
preliminary physicality check that fails to be satisfied: the
trace over the system degrees of freedom of Eq. (7) does not
produce the von Neumann equation for the ancilla. To illustrate
this statement we consider the simple case where γ = 0 in
the dissipator L̂S . For this choice of parameter, the first term
at the right hand side of the master equation in Eq. (7) is
null, and, after tracing over the system degree of freedom,
one obtains ρ̇A= − i [ĤA,

∫ t

0 dt ′k(t ′)e−i ĤAt ′ρA(t − t ′)ei ĤAt ′].
This equation cannot be cast in the form of a von Neumann
equation; therefore it cannot describe the unitary evolution of
the ancillary qubit. Furthermore, such an equation does not
even describe a physical evolution, since it breaks positivity.
The reason for that can be tracked down in the founding idea of
the PM approach: the use of an additional measurement on the
bath at a random time perturbing the dynamics described by
the exact Kraus operator representation. Even if the ancillary
system does not interact with the bath, the randomicity of such
an instant of time (weighted for the memory function of the
bath) modifies the purely unitary dynamics of the ancilla, no
longer recovered when tracing over the system. This analysis
demonstrates that the verbatim application of the PM recipe to

systems where a partially unitary dynamics is involved risks
producing highly unphysical results.

V. INTRODUCING AN ANCILLARY SYSTEM:
CURING PHYSICALITY

We finally show why the naive generalization of the PM
master equation failed. Let us consider Eq. (1) where now
ρ(t) is the density matrix of the system-ancilla pair in the
interaction picture with respect the bath (ĤB) and system-
ancilla (Ĥ0) free Hamiltonians. We take �(t) = �S(t) ⊗ 1A

with, as before, �S(t) = eL̂S t . By performing a transformation
to the Schrödinger picture by means of the operator Û0(t) =
e−iĤ0t and assuming that system and ancilla are not interacting
and their initial state is factorized, we get

ρ̇(t) = −i[ĤS,ρS(t)] ⊗ ρA(t) − iρS(t) ⊗ [ĤA,ρA(t)]

+ L̂S

∫ t

0
dt ′k(t ′)eL̂S t ′ ÛS(t ′)ρS(t − t ′)Û †

S(t ′) ⊗ ρA(t),

(8)

where, with a little alteration of notation, the density matrix
ρ(t) is meant to be in the Schrödinger picture, ĤS,(A) is the
free Hamiltonian of the system (ancilla), and ÛS(t) = e−iĤS t .
The presence of the term eL̂S t ′ ÛS(t ′)ρS(t − t ′)Û †

S(t ′) tells us
that after the extra generalized measurement preformed by the
bath at time t ′, the evolution of the system proceeds for a
time interval t − t ′ under the Markovian map [14]. The above
equation thus generates a global map �(t) = �S(t) ⊗ �A(t)
where �S(t) is the one induced by the master equation (2)
(in the Schrödinger picture) and �A(t)ρA → Û0(t)ρAÛ †

0 (t).
The positivity of �(t) is guaranteed by the positivity of the
single maps once conditions for complete positivity of �S(t)
are met [14]. �(t) is thus a proper generalization of the PM
master equation as one would expect.

In order to derive Eq. (8) ab initio, one has to propagate the
effects of the bath from time t ′ up to t [14]. This obviously
makes sense only for those degrees of freedom which are
actually interacting with the bath. This is not the case for
the ancilla, whose dynamics is entirely unitary. It is then
not sufficient that the superoperator �(t) does only act over
the relevant part of the Hilbert space [�(t) = �S(t) ⊗ 1A]:
the propagation has to involve only that particular subspace.
This condition cannot be met if one derives Eq. (2) in the
Schrödinger picture by simply replacing �(t), given that
the memory kernel “keeps track” of all of the degrees of
freedom regardless of whether or not they did interact with
the bath at one point in the past. This problem can be
overcome by introducing a memory kernel which is of the
form k(t)1M ⊗ δ(t)1F , where 1M is the identity operator over
the subspace the bath “has memory of,” whereas 1F does act
over the “free” subspace.

VI. CONCLUSION AND FINAL REMARKS

In this paper we highlighted the hazard of using PM
master equations in systems containing a partially unitary
dynamics. The specific example of a physical PM master
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equation describing a damped qubit extended to include an
ancillary one shows that the introduction of a Hamiltonian term
has drastic effects even when the ancilla is unitarily evolving
and totally decoupled from the system and the environment.
Both the intuitive approach, based on the summation of the
two independent generators of the system and ancilla, and the
PM derivation, accounting for the ancilla degree of freedom
ab initio, break fundamental physicality requirements such as
positivity. As final remarks we add that the same conceptual
problems arise when using Hamiltonian terms coupling the
system and ancilla (such as Ising coupling), and also in the case
where no ancilla is brought in and the Hamiltonian term acts
on the system only. Analogous results can be found when the
equation to generalize is a phenomenological memory-kernel
master equation. This difficulty has also been considered in
a different context in [20], where complete positivity for
an initially well-defined integrodifferential master equation
has been preserved upon the introduction of a Hamiltonian
term only by suitably modifying the integral kernel. Due
to their very construction, those master equations do not
always guarantee positivity and CP, even in the single-qubit
formulation.

We have addressed the use of PM master equations in the
case of composite (interacting and noninteracting) systems,
pointing out that quite a careful approach should be taken to
include the unitary part of the evolution in the measurement-
based picture at the basis of the PM framework. For the case
of noninteracting particles, only one of which is experiencing
the effects of the PM environment, the intuitive combination
of the separate dynamics of the two systems may lead up to
unphysical results. Our formal finding, which is interesting
from a fundamental viewpoint, will have implications at the
pragmatic side in schemes where the ancilla is used in order
to probe the properties of the the environment into which the
system is immersed [17].
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APPENDIX A: DERIVATION OF
THE TIME-LOCAL GENERATOR

Here we present the derivation of the time-local gen-
erator associated with the master equation in Eq. (4). By
using the decomposition of ρ(t) in terms of the damping
basis {σ̂ S

i }(i = 0,3,± with σ̂ S
3 the z Pauli matrix) given by

ρ(t) = ∑
i,j cij (t)σ̂ S

i ⊗ σ̂A
j , we can derive the following set of

differential equations

ċij (t)= − i
∑
kl

hkl
ij ckl(t)+λi

∫ t

0
dτk(τ )eλiτ cij (t − τ ), (A1)

with hkl
ij ≡ Tr{ ˆ̌σ

S

i ⊗ ˆ̌σ
A

j
[H,σ̂ S

k ⊗ σ̂A
l ]} and ˆ̌σ

S,A

i the elements
of the dual damping basis for the system and ancilla. These
equations can be solved in the Lapace space as

cij (t) = L−1

[
1

s + ihj − λiχ

χ+s−λi

]
cij (0), (A2)

where, according to Ĥ as given in Eq. (5), one has hkl
ij =:

δikδjlhj , and the time dependence of the Laplace antitransform
L−1[·] is understood. The solution shows that the evolution
map is diagonal in the basis {σ̂ S

i ⊗ σ̂A
j } and can be written as

a diagonal 16 × 16 matrix

�(t) = diag{ζij (t)}, (A3)

with elements

ζij (t) = e−�ij t/2

[
cosh

(
�ij t

2

)
+ �∗

ij

�ij

sinh

(
�ij t

2

)]
, (A4)

where �ij = √
(χ+λi )2−h2

j −2ihj (χ−λi ) and �ij = χ−λi+ihj .
Evidently, the coefficients ζij (t) cannot be written as ζi(t)ζj (t);
therefore the evolution map �(t) is not given by the tensor
product ⊗k=S,A�k(t) of single-qubit maps �k(t). Having the
matrix representation of the evolution map, we can calcu-
late the time-convolutionless (TCL) or time-local generator
KTCL(t) = �̇(t)�(t)−1, whose matrix representation in the
two-qubit damping basis is given by

K(t) = �̇(t)�(t)−1 = diag

{
ζ̇ij (t)

ζij (t)

}
. (A5)

Given a basis {B̂a}a=0,...,N2−1 in L(HN ), one can define the
scalar product between two superoperators defined in the space
of linear operators L(HN ) [5] as

〈�̂1,�̂2〉 = ∑
a Tr{�̂1[B̂a]†�̂2[B̂a]}. (A6)

A basis in the space of superoperators is given by the family
{ϕ̂βγ }β,γ=0,...,N2−1 such that ϕ̂βγ [ρ] = B̂β�B̂†

γ with � a generic

density matrix. Therefore, any superoperator �̂ acting on
L(HN ) can be written as

�̂� =
∑
βγ

�βγ ϕ̂βγ [ρ] =
∑
βγ

�βγ B̂β�B̂†
γ , (A7)

with �βγ = 〈ϕβγ ,�〉. We take a basis {B̂a}a=0,...N2−1 such
that B̂0 = 1√

N
1̂ and Tr{B̂a} = 0, ∀ a = 1, . . . ,N2 − 1. From

the expression

KTCL(t)[ρ] =
N2−1∑
β,γ=0

Kβγ (t)B̂βρB̂†
γ (A8)

of the time-local generator, we obtain its Lindblad-like version
simply by removing the first row and the first column of the
corresponding matrix of coefficients, since the evolution map is
trace preserving and thus Tr{KTCL(t)[ρ]} = 0. We thus obtain

KTCL(t)[ρ]

= −i[Ĥ ′,ρ] +
N2−1∑
β,γ=1

Kβγ (t)

(
B̂βρB̂†

γ − 1

2
{B̂†

γ B̂β,ρ}
)

,

(A9)
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with the Hamiltonian term given by Ĥ ′ = 1
2i

(ĝ† − ĝ) and

ĝ = 1√
N

N2−1∑
β=1

Kβ0(t)B̂β . (A10)

In the basis given by

B̂SA
0 = 1̂SA/2,

B̂SA
a = (

1̂S ⊗ σ̂A
j

)
/2, j = 1,2,3; a = 1,2,3

(A11)
B̂SA

a = (
σ̂ S

i ⊗ 1̂A
)
/2, i = 1,2,3; a = 4,5,6

B̂SA
a = (

σ̂ S
i ⊗ σ̂A

j

)
/2, i,j = 1,2,3; a = 7, . . . ,15,

where σ̂
S,A
1,2 are the x and y Pauli matrices, respectively,

the local generator in Lindblad form is given by Eq. (A9)
with

Kβγ (t) =
∑

a

Tr{B̂γ B̂†
aB̂

†
βKTCL[B̂a]}, (A12)

with KTCL(t)[B̂a] that can be explicitly calculated using the
relation

KTCL[ρ]

=
∑
ij

ζ̇ij (t)

ζij (t)
Tr

{
ˆ̌σ

S

i ⊗ ˆ̌σ
A

j ρ
}
σ̂ S

i ⊗ σ̂A
j (i,j = 0,z,±).

(A13)

The Hamiltonian term is obtained substituting the expression
Kβ0(t) = 1

2

∑
a Tr{B̂†

aB̂
†
βKTCL[B̂a]} in Eq. (A10).

Due to the particular choice of the basis in the space of the
superoperators, the dynamics can create correlations between
the two qubits only if there are nonzero coefficients Kβγ for
β,γ = 7, . . . ,15, i.e., if the dynamics involves basis elements
of the form σ̂ S

i ⊗ σ̂A
j . Thus, a necessary condition for the

generation of correlations is that there are nonzero values
outside the 7 × 7 top-left corner reduction of the coefficients
matrix given by Kβγ . For example, one can directly check
that if ζij (t) = ζi(t)ζj (t), then Kβγ = 0 for β,γ = 7, . . . ,15,
while this is not the case for ζij (t) given by Eq. (A4). In this

case, there are nonzero coefficients related to σ̂ S
i ⊗ σ̂A

j in the
dissipative part of the generator, and there is also a nonzero
coefficient associated with σ̂ S

z ⊗ σ̂A
z in the Hamiltonian part.

This means that the Hamiltonian term added in the master
equation given by Eq. (4) modifies entirely the structure of the
time-local generator.

APPENDIX B: AB INITIO EXTENSION OF THE
POST-MARKOVIAN MASTER EQUATION

Here we present the mathematical calculations we carry
over to derive the master equation in Eq. (7), obtained by
including ab initio the ancillary system and its Hamiltonian
evolution. We recall the notation used: the Markovian dissipa-
tive generator is �S(t) = eLS t , while the unitary map acting on
the ancilla is �A(t)[ρ] = UA(t)[ρ]U †

A(t). The starting point is
Eq. (1), namely,

∂ρ

∂t
=

∫ t

0
dt ′k(t ′)�(t ′)

∂�(t − t ′)
∂(t − t ′)

�−1(t − t ′)ρ(t − t ′). (B1)

As the system and ancilla are not interacting, we set �(t) =
�S(t) ⊗ �A(t). We can thus write

�−1(t − t ′)ρ(t − t ′) = �−1
S (t − t ′)U †

A(t − t ′)
× ρ(t − t ′)UA(t − t ′), (B2)

and thus, given that ∂�s (t−t ′)
∂(t−t ′) = LSe

LS (t−t ′) = LS�S(t − t ′), we
have that

�̇(t − t ′)�−1(t − t ′)ρ(t − t ′)
= LSρ(t − t ′) − i[HA,ρ(t − t ′)]. (B3)

Using the previous results we finally obtain

d

dt
ρ(t) = L̂S ⊗ 1̂A

∫ t

0
dt ′k(t ′)eL̂S t ′e−i HAt ′ρ(t − t ′)ei HAt ′

−i

[̂
1S ⊗ HA,

∫ t

0
dt ′k(t ′)eL̂S t ′e−i HAt ′ρ(t−t ′)ei HAt ′

]
.

(B4)
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C. Pineda, and I. Garcı́a-Mata, Phys. Rev. Lett. 107, 080404
(2011).

[9] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958); R. Zwanzig, J.
Chem. Phys. 33, 1338 (1960).

[10] H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 59,
1633 (1999).

[11] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[12] J. Piilo, S. Maniscalco, K. Harkonen, and K. A. Suominen, Phys.

Rev. Lett. 100, 180402 (2008).
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[16] Á. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105,

050403 (2010).
[17] S. Campbell, M. Paternostro, S. Bose, and M. S. Kim, Phys.

Rev. A 81, 050301 (2010).
[18] H. J. Briegel and B. G. Englert, Phys. Rev. A 47, 3311 (1993).
[19] M. Choi, Linear Algebra Appl. 10, 285 (1975).
[20] A. A. Budini and H. Schomerus, J. Phys. A: Math. Gen. 38,

9251 (2005).

032120-6

http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1103/PhysRevLett.67.2295
http://dx.doi.org/10.1103/PhysRevLett.67.2295
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1088/1367-2630/12/6/065002
http://dx.doi.org/10.1103/PhysRevA.83.032103
http://dx.doi.org/10.1103/PhysRevLett.107.080404
http://dx.doi.org/10.1103/PhysRevLett.107.080404
http://dx.doi.org/10.1143/PTP.20.948
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1103/PhysRevA.59.1633
http://dx.doi.org/10.1103/PhysRevA.59.1633
http://dx.doi.org/10.1103/PhysRevA.55.2290
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1016/S0375-9601(00)00014-1
http://dx.doi.org/10.1016/S0375-9601(00)00014-1
http://dx.doi.org/10.1103/PhysRevA.71.020101
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.75.062103
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevA.81.050301
http://dx.doi.org/10.1103/PhysRevA.81.050301
http://dx.doi.org/10.1103/PhysRevA.47.3311
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1088/0305-4470/38/42/006
http://dx.doi.org/10.1088/0305-4470/38/42/006

