123 research outputs found

    Antarctic Peninsula I : Volcanology

    Get PDF
    The fieldwork on which this chapter is based was undertaken by MJH in 1985-1988. The authors thank the British Antarctic Survey for originally supporting our project. Andy Saunders is also thanked for additional information on the Argo Point outcrop, and we are grateful to Janet Thomson for permission to publish her photograph of Mt Benkert.Peer reviewedPostprin

    A new glacier inventory for 2009 reveals spatial and temporal variability in glacier response to atmospheric warming in the Northern Antarctic Peninsula, 1988–2009

    Get PDF
    The Northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse published data for glacier classification, morphology, area, length or altitude. This paper firstly uses ASTER images from 2009 and a SPIRIT DEM from 2006 to classify the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island. Secondly, this paper uses LANDSAT-4 and ASTER images from 1988 and 2001 and data from the Antarctic Digital Database (ADD) from 1997 to document glacier change 1988–2009. From 1988–2001, 90 % of glaciers receded, and from 2001–2009, 79 % receded. Glaciers on the western side of Trinity Peninsula retreated relatively little. On the eastern side of Trinity Peninsula, the rate of recession of ice-shelf tributary glaciers has slowed from 12.9 km<sup>2</sup> a<sup>−1</sup> (1988–2001) to 2.4 km<sup>2</sup> a<sup>−1</sup> (2001–2009). Tidewater glaciers on the drier, cooler Eastern Trinity Peninsula experienced fastest recession from 1988–2001, with limited frontal retreat after 2001. Land-terminating glaciers on James Ross Island also retreated fastest in the period 1988–2001. Large tidewater glaciers on James Ross Island are now declining in areal extent at rates of up to 0.04 km<sup>2</sup> a<sup>−1</sup>. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula. Strong variability in tidewater glacier recession rates may result from the influence of glacier length, altitude, slope and hypsometry on glacier mass balance. High snowfall means that the glaciers on the Western Peninsula are not currently rapidly receding. Recession rates on the eastern side of Trinity Peninsula are slowing as the floating ice tongues retreat into the fjords and the glaciers reach a new dynamic equilibrium. The rapid glacier recession of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper tidewater glaciers on the Eastern Antarctic Peninsula will attain more stable frontal positions after low-lying ablation areas are removed

    Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Margeurite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Get PDF
    Funded by NERC grant NE/F0128961/1We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonn?e valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15?20 m asl in Ablation and Moutonn?e valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ? 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ? 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice ShelfpublishersversionPeer reviewe

    Bathymetry and geological setting of the South Sandwich Islands volcanic arc

    Get PDF
    The South Sandwich Islands and associated seamounts constitute the volcanic arc of an active subduction system situated in the South Atlantic. We introduce a map of the bathymetry and geological setting of the South Sandwich Islands and the associated East Scotia Ridge back-arc spreading centre that consists of two sides: side 1, a regional overview of the volcanic arc, trench and back-arc, and side 2, detailed maps of the individual islands. Side 1 displays the bathymetry at scale 1:750 000 of the intra-oceanic, largely submarine South Sandwich arc, the back-arc system and other tectonic boundaries of the subduction system. Satellite images of the islands on side 2 are at scales of 1:50 000 and 1:25 000 with contours and main volcanological features indicated. These maps are the first detailed topological and bathymetric maps of the area. The islands are entirely volcanic in origin, and most have been volcanically or fumarolically active in historic times. Many of the islands are ice-covered, and the map forms a baseline for future glaciological changes caused by volcanic activities and climate change. The back-arc spreading centre consists of nine segments, most of which have rift-like morphologie

    A lithostratigraphical and chronological study of Oligocene-Miocene sequences on eastern King George Island, South Shetland Islands (Antarctica) and correlation of glacial episodes with global isotope events

    Get PDF
    King George Island (South Shetland Islands, Antarctic Peninsula) is renowned for its terrestrial palaeoenvironmental record, which includes evidence for potentially up to four Cenozoic glacial periods. An advantage of the glacigenic outcrops on the island is that they are associated with volcanic formations that can be isotopically dated. As a result of a new mapping and chronological study, it can now be shown that the published stratigraphy and ages of many geological units on eastern King George Island require major revision. The Polonez Glaciation is dated as c. 26.64 ± 1.43 Ma (Late Oligocene (Chattian Stage)) and includes the outcrops previously considered as evidence for an Eocene glacial ('Krakow Glaciation'). It was succeeded by two important volcanic episodes (Boy Point and Cinder Spur formations) formed during a relatively brief interval (< 2 Ma), which also erupted within the Oligocene Chattian Stage. The Melville Glaciation is dated as c. 21–22 Ma (probably 21.8 Ma; Early Miocene (Aquitanian Stage)), and the Legru Glaciation is probably ≤ c. 10 Ma (Late Miocene or younger). As a result of this study, the Polonez and Melville glaciations can now be correlated with increased confidence with the Oi2b and Mi1a isotope zones, respectively, and thus represent major glacial episodes

    The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica.

    Get PDF
    The caldera collapse of Deception Island Volcano, Antarctica, was comparable in scale to some of the largest eruptions on Earth over the last several millennia. Despite its magnitude and potential for far-reaching environmental effects, the age of this event has never been established, with estimates ranging from the late Pleistocene to 3370 years before present. Here we analyse nearby lake sediments in which we identify a singular event produced by Deception Island's caldera collapse that occurred 3980 ± 125 calibrated years before present. The erupted tephra record the distinct geochemical composition of ejecta from the caldera-forming eruption, whilst an extreme seismic episode is recorded by lake sediments immediately overlying the collapse tephra. The newly constrained caldera collapse is now the largest volcanic eruption confirmed in Antarctica during the Holocene. An examination of palaeorecords reveals evidence in marine and lacustrine sediments for contemporaneous seismicity around the Antarctic Peninsula; synchronous glaciochemical volcanic signatures also record the eruption in ice cores spread around Antarctica, reaching >4600 km from source. The widespread footprint suggests that this eruption would have had significant climatic and ecological effects across a vast area of the south polar region

    Sea ice extent and seasonality for the Early Pliocene northern Weddell Sea

    Get PDF
    Growth increment analysis coupled with stable isotopic data (δ18O/δ13C) from Early Pliocene (ca 4.7 Ma) Austrochlamys anderssoni from shallow marine sediments of the Cockburn Island Formation, northern Antarctic Peninsula, suggest these bivalves grew through much of the year, even during the coldest parts of winter recorded in the shells. The high frequency fluctuation in growth increment width of A. anderssoni appears to reflect periodic, but year-round, agitation of the water column enhancing benthic food supply from organic detritus. This suggests that Austrochlamys favoured waters that were largely sea ice free. Our data support interpretation of the Cockburn Island Formation as an interglacial marine deposit and the previous hypothesis that Austrochlamys retreated from the Antarctic as sea ice extent expanded, this transition occurring during climate cooling in the Late Pliocene

    Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula

    Get PDF
    The northern Antarctic Peninsula is currently undergoing rapid atmospheric warming1. Increased glacier-surface melt during the twentieth century2, 3 has contributed to ice-shelf collapse and the widespread acceleration4, thinning and recession5 of glaciers. Therefore, glaciers peripheral to the Antarctic Ice Sheet currently make a large contribution to eustatic sea-level rise6, 7, but future melting may be offset by increased precipitation8. Here we assess glacier–climate relationships both during the past and into the future, using ice-core and geological data and glacier and climate numerical model simulations. Focusing on Glacier IJR45 on James Ross Island, northeast Antarctic Peninsula, our modelling experiments show that this representative glacier is most sensitive to temperature change, not precipitation change. We determine that its most recent expansion occurred during the late Holocene ‘Little Ice Age’ and not during the warmer mid-Holocene, as previously proposed9. Simulations using a range of future Intergovernmental Panel on Climate Change climate scenarios indicate that future increases in precipitation are unlikely to offset atmospheric-warming-induced melt of peripheral Antarctic Peninsula glaciers

    Role of microstructure and surface defects on the dissolution kinetics of CeO2, a UO2 fuel analogue.

    Get PDF
    The release of radionuclides from spent fuel in a geological disposal facility is controlled by the surface mediated dissolution of UO2 in groundwater. In this study we investigate the influence of reactive surface sites on the dissolution of a synthesised CeO2 analogue for UO2 fuel. Dissolution was performed on: CeO2 annealed at high temperature, which eliminated intrinsic surface defects (point defects and dislocations); CeO2-x annealed in inert and reducing atmospheres to induce oxygen vacancy defects; and on crushed CeO2 particles of different size fractions. BET surface area measurements were used as an indicator of reactive surface site concentration. Cerium stoichiometry, determined using X-ray Photoelectron Spectroscopy (XPS) and supported by X-ray Diffraction (XRD) analysis, was used to determine oxygen vacancy concentration. Upon dissolution in nitric acid medium at 90°C, a quantifiable relationship was established between the concentration of high energy surface sites and CeO2 dissolution rate; the greater the proportion of intrinsic defects and oxygen vacancies, the higher the dissolution rate. Dissolution of oxygen vacancy-containing CeO2-x gave rise to rates that were an order of magnitude greater than for CeO2 with fewer oxygen vacancies. While enhanced solubility of Ce3+ influenced the dissolution, it was shown that replacement of vacancy sites by oxygen significantly affected the dissolution mechanism due to changes in the lattice volume and strain upon dissolution and concurrent grain boundary decohesion. These results highlight the significant influence of defect sites and grain boundaries on the dissolution kinetics of UO2 fuel analogues and reduce uncertainty in the long-term performance of spent fuel in geological disposal
    corecore