112 research outputs found

    Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study

    Get PDF
    BACKGROUND: A method to evaluate and analyze the massive data generated by series of microarray experiments is of utmost importance to reveal the hidden patterns of gene expression. Because of the complexity and the high dimensionality of microarray gene expression profiles, the dimensional reduction of raw expression data and the feature selections necessary for, for example, classification of disease samples remains a challenge. To solve the problem we propose a two-level analysis. First self-organizing map (SOM) is used. SOM is a vector quantization method that simplifies and reduces the dimensionality of original measurements and visualizes individual tumor sample in a SOM component plane. Next, hierarchical clustering and K-means clustering is used to identify patterns of gene expression useful for classification of samples. RESULTS: We tested the two-level analysis on public data from diffuse large B-cell lymphomas. The analysis easily distinguished major gene expression patterns without the need for supervision: a germinal center-related, a proliferation, an inflammatory and a plasma cell differentiation-related gene expression pattern. The first three patterns matched the patterns described in the original publication using supervised clustering analysis, whereas the fourth one was novel. CONCLUSIONS: Our study shows that by using SOM as an intermediate step to analyze genome-wide gene expression data, the gene expression patterns can more easily be revealed. The "expression display" by the SOM component plane summarises the complicated data in a way that allows the clinician to evaluate the classification options rather than giving a fixed diagnosis

    TGF-β-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutively active p38 MAPK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytokines of the transforming growth factor β (TGF-β) superfamily exert effects on proliferation, apoptosis and differentiation in various cell types. Cancer cells frequently acquire resistance to the anti-proliferative signals of TGF-β, which can be due to mutations in proteins of the signalling cascade. We compared the TGF-β-related signalling properties in B-cell lymphoma cell lines that were sensitive or resistant to TGF-β-induced anti-proliferative effects.</p> <p>Results</p> <p>TGF-β sensitive cell lines expressed higher cell surface levels of the activin receptor-like kinase 5 (Alk-5), a TGF-β receptor type 1. The expression levels of the other TGF-β and bone morphogenetic protein receptors were comparable in the different cell lines. TGF-β-induced phosphorylation of Smad2 was similar in TGF-β sensitive and resistant cell lines. In contrast, activation of Smad1/5 was restricted to cells that were sensitive to growth inhibition by TGF-β. Moreover, with activin A we detected limited anti-proliferative effects, strong phosphorylation of Smad2, but no Smad1/5 phosphorylation. Up-regulation of the TGF-β target genes Id1 and Pai-1 was identified in the TGF-β sensitive cell lines. Constitutive phosphorylation of MAPK p38 was restricted to the TGF-β sensitive cell lines. Inhibition of p38 MAPK led to reduced sensitivity to TGF-β.</p> <p>Conclusions</p> <p>We suggest that phosphorylation of Smad1/5 is important for the anti-proliferative effects of TGF-β in B-cell lymphoma. Alk-5 was highly expressed in the sensitive cell lines, and might be important for signalling through Smad1/5. Our results indicate a role for p38 MAPK in the regulation of TGF-β-induced anti-proliferative effects.</p

    Influence of beam pruning techniques on LET and RBE in proton arc therapy

    Get PDF
    Introduction: Proton arc therapy (PAT) is an emerging treatment modality that holds promise to improve target volume coverage and reduce linear energy transfer (LET) in organs at risk. We aimed to investigate if pruning the highest energy layers in each beam direction could increase the LET in the target and reduce LET in tissue and organs at risk (OAR) surrounding the target volume, thus reducing the relative biological effectiveness (RBE)-weighted dose and sparing healthy tissue. Methods: PAT plans for a germinoma, an ependymoma and a rhabdomyosarcoma patient were created in the Eclipse treatment planning system with a prescribed dose of 54 Gy(RBE) using a constant RBE of 1.1 (RBE1.1). The PAT plans was pruned for high energy spots, creating several PAT plans with different amounts of pruning while maintaining tumor coverage, denoted PX-PAT plans, where X represents the amount of pruning. All plans were recalculated in the FLUKA Monte Carlo software, and the LET, physical dose, and variable RBE-weighted dose from the phenomenological Rørvik (ROR) model and an LET weighted dose (LWD) model were evaluated. Results and discussion: For the germinoma case, all plans but the P6-PAT reduced the mean RBE-weighted dose to the surrounding healthy tissue compared to the PAT plan. The LET was increasingly higher within the PTV for each pruning iteration, where the mean LET from the P6-PAT plan was 1.5 keV/μm higher than for the PAT plan, while the P4- and P5-PAT plans provided an increase of 0.4 and 0.7 keV/μm, respectively. The other plans increased the LET by a smaller margin compared to the PAT plan. Likewise, the LET values to the healthy tissue were reduced for each degree of pruning. Similar results were found for the ependymoma and the rhabdomyosarcoma case. We demonstrated a PAT pruning technique that can increase both LET and RBE in the target volume and at the same time decreased values in healthy tissue, without affecting the target volume dose coverage.publishedVersio

    LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    Get PDF
    BACKGROUND: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS: We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS: B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS: Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance

    Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell–like diffuse large B cell lymphoma

    Get PDF
    To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell–like (ABC), germinal center B cell–like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch μ (Sμ) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sγ and other illegitimate switch recombinations. Sequence analysis revealed ongoing Sμ deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase–dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Sμ in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB

    Loss of signalling via Gα13 in germinal center B-cell-derived lymphoma

    Get PDF
    Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined1,2. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells3,4. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma

    Molecular diagnosis of Burkitt\u27s lymphoma.

    Get PDF
    BACKGROUND: The distinction between Burkitt\u27s lymphoma and diffuse large-B-cell lymphoma is crucial because these two types of lymphoma require different treatments. We examined whether gene-expression profiling could reliably distinguish Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma. METHODS: Tumor-biopsy specimens from 303 patients with aggressive lymphomas were profiled for gene expression and were also classified according to morphology, immunohistochemistry, and detection of the t(8;14) c-myc translocation. RESULTS: A classifier based on gene expression correctly identified all 25 pathologically verified cases of classic Burkitt\u27s lymphoma. Burkitt\u27s lymphoma was readily distinguished from diffuse large-B-cell lymphoma by the high level of expression of c-myc target genes, the expression of a subgroup of germinal-center B-cell genes, and the low level of expression of major-histocompatibility-complex class I genes and nuclear factor-kappaB target genes. Eight specimens with a pathological diagnosis of diffuse large-B-cell lymphoma had the typical gene-expression profile of Burkitt\u27s lymphoma, suggesting they represent cases of Burkitt\u27s lymphoma that are difficult to diagnose by current methods. Among 28 of the patients with a molecular diagnosis of Burkitt\u27s lymphoma, the overall survival was superior among those who had received intensive chemotherapy regimens instead of lower-dose regimens. CONCLUSIONS: Gene-expression profiling is an accurate, quantitative method for distinguishing Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma
    corecore