101 research outputs found

    A preliminary assessment of the potential risks from electrical infrastructure to large birds in Kenya

    Get PDF
    A rapid risk assessment of the interactions between Kenya’s large birds and electrical infrastructure was conducted around Magadi and Naivasha in Kenya in January 2009. Six out of the seven <132 kV distribution pole designs assessed pose an electrocution risk to medium and large-sized birds. Several sites of high bird collision risk were identified. Several of the observed >132 kV transmission tower structures were vulnerable to electrical faulting caused by birds. Of approximately 24 relevant bird species that are of conservation concern in Kenya, 17 (71 %) face a high risk of direct interactions with electrical infrastructure. Priority species for attention include the Egyptian Vulture Neophron percnopterus, White-headed Vulture Trigonoceps occipitalis, Lappet-faced Vulture Torgos tracheliotos, Grey-crowned Crane Balearica regulorum, Lesser Flamingo Phoeniconaias minor, White-backed Vulture Gyps africanus, Rüppell’s Vulture Gyps rueppellii, Martial Eagle Polemaetus bellicosus, White Stork Ciconia ciconia, Secretarybird Sagittarius serpentarius, and various sit-and-wait raptors. These preliminary findings have national relevance given plans (already underway) for a rapid expansion of electrical infrastructure in Kenya; recommendations are made for a national response to this matter

    A power line risk assessment for selected South African birds of conservation concern

    Get PDF
    MSc., Faculty of Science, University of the Witwatersrand, 2011A selection of southern African bird species were modelled in terms of the probability of these species colliding with or being electrocuted on overhead power lines in South Africa, based on morphological and behavioral factors. Species were included in the model on the basis of internationally recognized vulnerability to these interactions at the family level. The collision model performed poorly when tested against the actual reported mortalities for species contained in the Eskom-EWT Strategic Partnership Central Incident Register CIR)(chi-square of goodness of fit) at the individual species, family and within family levels. The electrocution model performed slightly better at the family, and within family level. Both collision and electrocution models performed better for the physically larger species (and families) and for those species with higher modelled probability of collision or electrocution. As the product of random carcass detection and reporting, the CIR data are biased in various ways. Testing the models against the CIR is therefore equally important for highlighting inadequacies in the CIR, as in the model. A number of new species have emerged as being of high collision (including most importantly African Pygmy Goose, Southern Ground Hornbill, Black-bellied Bustard, Yellow-throated Sandgrouse, Caspian Tern, Hooded Vulture, Bateleur, African Marsh Harrier, Black Harrier, Pink-backed Pelican and Yellow-billed Stork) or electrocution (Southern Bald Ibis) probability in theoretical terms, and will require further investigation to determine their actual probability of interaction. By mapping the combined distributions of those species with high probabilities of collision and/or electrocution mortality, a number of priority high risk geographic areas emerge around the country

    Cloning and recombinant expression of a 822 bp region of a Pf403 Plasmodium falciparum gene.

    Get PDF
    Thesis (M.Sc.) - University of Natal, Pietermaritzburg, 2003.Malaria is a devastating parasitic disease in humans caused by species in the genus Plasmodium. With over 100 million cases and at least 1.5 million fatalities each year, the disease accounts for 4-5% of all fatalities in the world. A recent increase in the number of malaria cases in South Africa has imposed severe costs on the economy and public health. Immunity to malaria is a multi-component system involving both B and T celllymphocytes. Pc96 is a 96 kDa antigen identified in the mouse malaria model Plasmodium chabaudi adami. It is known to be associated with the outer membrane of mouse erythrocytes infected with the parasite and has shown protective roles in mice challenged with P. chabaudi adami. A specific T cell clone has been identified that adoptively provides protection to athymic mice infected with P. chabaudi adami. Antibodies raised against Pc96 identified proteins that induced the proliferation of the protective T cell clones. At least four other antigens of different species of. malaria share at least one cross-reactive epitope. In an attempt to identify a Plasmodiumfalciparum homologue ofPc96, the amino-acid sequence was used in a BLAST search of the P. falciparum genome database, identifying a 403 kDa protein with a high degree of homology to Pc96. Sequence alignments indicated a region spanning 90 amino acids in Pf403 that overlaps the Pc96 amino acid sequence. A 178 kDa protein in P. yoelii yoelii (Pyy178) was shown to be highly similar to Pc96. Tvcell epitope prediction programs identified putative T cell epitopes in Pc96 which appear to be conserved in Pf403 and Pyy178. A casein kinase IT phosphorylation site was also identified in this region and is conserved in both sequences. PCR primers were designed to amplify regions of the MAL3P6.11 gene coding for Pf403 from P.falciparum genomic DNA. An 817 bp region in the MAL3P6.11 gene was amplified. This codes for the region ofPf403 that shows high homology to Pc96 and contains the conserved T cell epitopes and casein kinase phophorylation site. A BamHI site was incorporated into the forward primer to facilitate in-frame ligation with cloning vectors. The PCRproduct obtained was verified by restriction analysis using HindIII and EcoRI sites within the fragment. The 817 bp peR product was cloned into the pMOSBlue vector using a blunt-endedPCR cloning kit, and transformed into MOSBlue competent cells. Recombinants were identified using the uIV complementation system, and verified by PCR, plasmid DNA isolation, and restriction digestion analysis. The insertDNA in pMOSBlue was cut out with BamHI and sub-cloned into the BamHI site in the pMAL-C2x expression vector. Sequencing ofthe construct confirmed the identity of the cloned insert and showed the sequence to be in frame with the malE gene coding for maltose binding protein (MBP). The fusion protein, MBP-Pf32 .5, was induced and expressed as a 75 kDa protein comprising ofthe 32.5 kDa region ofPf403, and MBP (42.5 kDa) and was detected by anti-MBP antibodies, by western blotting. This recombinant protein has many applications for further studies involving the characterisation of the Pf403 protein, and the determination of possible roles that the protein may have in stimulating an immune response during human malaria infections

    A preliminary survey of avian mortality on power lines in the Overberg, South Africa

    Get PDF
    Avian mortality on power lines in South Africa is currently recorded on the Central Incident Register (CIR), which is a collation of incidentally reported cases. The true scale of the problem is unknown, so we report here on a survey of representative power lines in the Overberg region of the Western Cape. On the 199 km surveyed, 123 birds of at least 18 species were found. Collisions were more common than electrocutions, apparently killing 88% of the birds found on distribution lines. Large terrestrial birds were the most numerous victims, with large numbers of Blue Cranes Anthropoides paradiseus and Denham's Bustards Neotis denhami killed. In comparison with mortality rates from the CIR, we estimate that only 2.6% of power-line mortalities are reported, emphasising the importance of systematic surveys in quantifying mortality and directing mitigation. Our survey highlights the general hazard that power lines pose to avifauna, and the urgent need for further research into the population impacts of the high incidence of collisions

    Bruton's tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment

    Get PDF
    Tumour necrosis factor (TNF) is produced by primary human macrophages in response to stimulation by exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) via Toll-like receptor (TLR) signalling. However, uncontrolled TNF production can be deleterious and hence it is tightly controlled at multiple stages. We have previously shown that Bruton's tyrosine kinase (Btk) regulates TLR4-induced TNF production via p38 MAP Kinase by stabilising TNF messenger RNA. Using both gene over-expression and siRNA-mediated knockdown we have examined the role of Btk in TLR7/8 mediated TNF production. Our data shows that Btk acts in the TLR7/8 pathway and mediates Ser-536 phosphorylation of p65 RelA and subsequent nuclear entry in primary human macrophages. These data show an important role for Btk in TLR7/8 mediated TNF production and reveal distinct differences for Btk in TLR4 versus TLR7/8 signalling

    Dual-specificity phosphatase 1 and tristetraprolin cooperate to regulate macrophage responses to lipopolysaccharide

    Get PDF
    Dual-specificity phosphatase (DUSP) 1 dephosphorylates and inactivates members of the MAPK superfamily, in particular, JNKs, p38a, and p38b MAPKs. It functions as an essential negative regulator of innate immune responses, hence disruption of the Dusp1 gene renders mice extremely sensitive to a wide variety of experimental inflammatory challenges. The principal mechanisms behind the overexpression of inflammatory mediators by Dusp12/2 cells are not known. In this study, we use a genetic approach to identify an important mechanism of action of DUSP1, involving the modulation of the activity of the mRNA-destabilizing protein tristetraprolin. This mechanism is key to the control of essential early mediators of inflammation, TNF, CXCL1, and CXCL2, as well as the anti-inflammatory cytokine IL-10. The same mechanism also contributes to the regulation of a large number of transcripts induced by treatment of macrophages with LPS. These findings demonstrate that modulation of the phosphorylation status of tristetraprolin is an important physiological mechanism by which innate immune responses can be controlled

    Gain-of-function mutation of tristetraprolin impairs negative feedback control of macrophages in vitro yet has overwhelmingly anti-inflammatory consequences in vivo

    Get PDF
    The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequencespecific manner to the 3= untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent antiinflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro. However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10

    Dominant suppression of inflammation via targeted mutation of the mRNA destabilizing protein tristetraprolin

    Get PDF
    In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies

    Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid athritis

    Get PDF
    BACKGROUND AND OBJECTIVES: For our understanding of the pathogenesis of rheumatoid arthritis (RA), it is important to elucidate the mechanisms underlying early stages of synovitis. Here, synovial cytokine production was investigated in patients with very early arthritis. METHODS: Synovial biopsies were obtained from patients with at least one clinically swollen joint within 12 weeks of symptom onset. At an 18-month follow-up visit, patients who went on to develop RA, or whose arthritis spontaneously resolved, were identified. Biopsies were also obtained from patients with RA with longer symptom duration (>12 weeks) and individuals with no clinically apparent inflammation. Synovial mRNA expression of 117 cytokines was quantified using PCR techniques and analysed using standard and novel methods of data analysis. Synovial tissue sections were stained for CXCL4, CXCL7, CD41, CD68 and von Willebrand factor. RESULTS: A machine learning approach identified expression of mRNA for CXCL4 and CXCL7 as potentially important in the classification of early RA versus resolving arthritis. mRNA levels for these chemokines were significantly elevated in patients with early RA compared with uninflamed controls. Significantly increased CXCL4 and CXCL7 protein expression was observed in patients with early RA compared with those with resolving arthritis or longer established disease. CXCL4 and CXCL7 co-localised with blood vessels, platelets and CD68(+) macrophages. Extravascular CXCL7 expression was significantly higher in patients with very early RA compared with longer duration RA or resolving arthritis CONCLUSIONS: Taken together, these observations suggest a transient increase in synovial CXCL4 and CXCL7 levels in early RA
    • …
    corecore