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Abstract 



Tumor-derived microvesicles (TMV) can mimic effects of tumor cells leading to an increased 

anti-inflammatory cytokine production, such as interleukin 10 (IL-10), by tumor-infiltrating 

monocytes and macrophages. Yet, the mechanism of IL-10 induction by TMV in monocytes 

remains unclear.  

The co-incubation of TMV derived from the human pancreas carcinoma cell line (HPC-4) 

with human monocytes resulted in a nearly 30-fold increase in IL-10 protein production. This 

effect operates at the level of transcription since monocytes transduced with an adenovirus 

containing IL-10-promoter luciferase reporter gene showed a 5-fold induction of luciferase 

activity after treatment with TMV. Since tumor cells can express hyaluronan (HA), which 

participates in tumor invasion and metastases, we have tested its effect on IL-10 expression. 

We showed that HA at the concentration of 100 μg/ml induces IL-10 protein expression and 

the IL-10 promoter activation in monocytes. Moreover, hyaluronidase treatment of TMV 

reduced IL-10 protein production by 50% and promoter activity by 40%. Inhibitors of the 

PI3K/Akt/mTOR pathway reduced both, TMV-induced IL-10 promoter activity and protein 

production, and the same was observed in monocytes when stimulated by HPC-4 cells or HA. 

Inhibition of PI3K activity down-regulated phosphorylation of the Akt and (to a lesser extent) 

mTOR proteins in monocytes following TMV or HA stimulation. When comparing monocyte 

subsets, TMV induced IL-10 protein and mRNA synthesis only in classical CD14++CD16- but 

not in CD16-positive monocytes. Our data show that TMV induce IL-10 synthesis in human 

classical monocytes via HA, which, in turn, activates the PI3K/Akt/mTOR pathway. 



Introduction 

Interleukin 10 (IL-10) is synthesized in vivo by a broad variety of immune cells (1-3) 

and inhibits the release of Th1 cytokines, antigen presentation, expression of co-stimulatory 

molecules, phagocytosis, but enhances B cell survival and antibody production (3-4). IL-10 

production is elevated in various types of cancer, where is produced by both tumor cells 

and/or tumor-infiltrating monocytes/macrophages (TIM), and is being associated with tumor-

mediated immunosuppression. IL-10 production by monocytes/macrophages following 

interaction with tumor cells and/or TMV results in alteration of their immunophenotype and 

biological activity (5-7). However, the signalling pathways responsible for IL-10 induction in 

monocytes/macrophages following their interactions with tumor cells are poorly 

characterised. IL-10 production by monocytes can be enhanced through the activation of 

phosphatidylinositol-3 kinase (PI3K) pathway (8). PI3K converts phosphatidylinositol-4,5-

bisphosphate into phosphatidylinositol-3,4,5-triphosphate, which recruits and activates 

downstream targets, including Akt, also termed protein kinase B (PKB). The other key 

cellular signalling pathway, depending on the mammalian target of rapamycin (mTOR), a 

serine/threonine protein kinase, affects broad aspects of cellular functions, such as 

metabolism, growth, and survival (9). Although, they were initially viewed as two separate 

pathways, it has been indicated that PI3K and mTOR are connected via Akt (10). 

PI3K/Akt/mTOR pathway has been reported to take part in the regulation of immune cells 

activity, including monocytes/macrophages (11). In many types of cancer, PI3K pathway is 

activated by hyaluronan (HA) (12). Moreover, signal transducer and activator of transcription 

3 (STAT3) and interferon regulatory factor 1 (IRF-1) have been characterised as important 

transcription factors inducing IL-10 promoter activation (13-14).  

Hyluronan (HA) is a glycosaminoglycan with a molecular weight ranging from 105 to 

107 Da and is a major component of the extracellular matrix (15). HA can be either attached 

directly to the cell surface by hyaluronan synthases or can bind to cell surface receptors, i.e. 

CD44, activating intracellular signalling pathways associated with them (15-17). HA 

accumulates in the cellular division sites (18) and is one of the major extracellular matrix 

components in human malignancies (19), participating in tumor invasion and metastases (15). 

TMV, originating from tumor cells, carry some tumor cell surface determinants, growth 

factors, nucleic acids, and tumor-associated antigens (6, 20-22). It has been previously 

suggested that tumor-monocyte interactions may involve hyaluronan or other CD44 ligands 



carried by TMV (23-24). Therefore, TMV may affect monocytes/macrophages functions, 

altering their immunophenotype and biological activity. Moreover, TMV differently affect 

monocyte subsets (7,25). Monocytes can be subdivided into three subsets: classical 

(CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) (26), where 

the latter two may be collectively referred to as CD16+ monocytes (27). The CD16+ 

monocytes are characterised by enhanced inflammatory cytokine secretion, including tumor 

necrosis factor α (TNF), and low secretion of IL-10; increased expression of human leukocyte 

antigens (HLA) class II and some adhesion molecules (28-30). They are considered to be 

more mature than classical monocytes (31), and their numbers are elevated in inflammatory 

diseases (32). In response to a contact with tumor cells, the CD16+ monocytes produce more 

proinflammatory cytokines (TNF, IL-12) and show an increased cytotoxic/cytostatic activity 

towards tumor cells (30). TMV-activated CD16+ monocytes also show an increased release of 

TNF, IL-12p40 and reactive nitrogen intermediates (RNI), while CD14++CD16- monocytes 

produce more reactive oxygen species (ROI) and IL-10 (25). 

In this study, we have proposed a new possible mechanism responsible for the 

induction of IL-10 production in monocytes after stimulation with TMV. For the first time, 

we provide evidence that HA carried by TMV is able to induce IL-10 production in classical 

CD14++ CD16- (but not in CD16+) monocytes via the PI3K/Akt/mTOR signalling pathway. 



Materials and Methods 

 

Isolation of monocytes and their subsets 

Monocytes were isolated by counter-flow centrifugal elutriation from peripheral blood 

mononuclear cells (PBMC) obtained from 10 healthy blood donors. Briefly, PBMC were 

isolated from EDTA-treated whole peripheral blood by the standard Ficoll/Isopaque 

(Pharmacia, Uppsala, Sweden) density gradient centrifugation. Monocytes were then 

separated from PBMC with the JE-5.0 elutriation system, equipped with the Sanderson 

separation chamber (Beckman, Palo Alto, CA, USA), as described previously (33). Purity of 

isolation was above 95% as tested by staining with anti-CD14 mAb (BD Biosciences 

Pharmingen, San Diego, CA) and flow cytometry analysis (FACSCanto flow cytometer, 

Becton Dickinson, San Jose, CA, USA). 

The following monoclonal antibodies (mAbs) were used to stain CD14++CD16- (further 

called: CD14+) and CD16+ monocytes: anti-CD14-APC (clone MφP9, BD Bioscience) and 

anti-CD16-PE-Cy7 (clone 3G8, BD Bioscience), in 1:25 dilution v/v. The stained monocytes 

were then incubated for 30 min at 4°C after which they were sorted using the FACSAria II 

cell sorter (BD Biosciences, San Jose, CA, USA) into foetal bovine serum (FBS)-coated 

polypropylene tubes (BD Biosciences), at 12.000 cells/s, in order to gain pure (usually 97-

98%) CD14+ and CD16+ subsets. The CD16+ monocytes were in the range 5-10%. 

 

Cell culture 

The HPC-4 cell line (34) was cultured by biweekly passages in RPMI 1640 supplemented 

with 5% FBS (Sigma, St. Louis, MO). FBS used in all experiments was earlier microvesicles-

depleted by appropriate centrifugation, as described previously (6). Cell lines were regularly 

tested for Mycoplasma sp. contamination by polymerase chain reaction (PCR) ELISA test 

(Roche Diagnostics GmbH, Mannheim, Germany) according to manufacturer’s protocol. 

Monocytes were cultured in RPMI 1640 medium supplemented with 2 mM l-glutamine 

(Invitrogen Life Technologies, Gaithersburg, MD), and 25 μg/ml gentamycin (Invitrogen Life 

Technologies), 1–2× nonessential amino acids (Invitrogen Life Technologies), and OPI 



supplement (contains oxalacetic acid, sodium pyruvate, and insulin; Sigma-Aldrich, Munich, 

Germany).  

Monocytes were co-cultured with HPC-4 (4 x 104/well) cells (2,5:1 ratio) in supplemented 

medium overnight at 37°C, 5% CO2 in humidified atmosphere. Then, supernatants were 

collected and kept frozen in -20°C.  

 

TMV isolation 

TMV were obtained from the HPC-4 cell line (TMVHPC) as previously described (7). Briefly, 

HPC-4 cells were cultured in RPMI 1640 (Sigma, St. Louis, MO) with 5% FBS and 

gentamycin (25 μg/ml). Supernatants from well grown cell cultures were collected and 

centrifuged at 300×g for 20 min to remove cell debris. Then, supernatants were again 

centrifuged at 50,000×g for 1 h at 4°C. Pellets were washed several times in PBS and 

resuspended in serum-free RPMI 1640 medium. Protein concentration of TMVHPC suspension 

was estimated by the Bradford method (BioRad, Hercules, CA). TMVHPC were tested for 

endotoxin contamination by the Limulus test (Charles River Laboratories, Inc., Wilmington, 

MA), stored at −20°C, and used for experiments only when TMV suspension was LPS-free. 

TMV were characterised in detail by flow cytometry and electron microscopy previously (6). 

 

Hyaluronan, hyaluronidase treatment, kinase inhibitors 

A low-molecular-weight potassium salt of hyaluronic acid (HA) from human umbilical cord 

(Calbiochem, Darmstadt, Germany), was added to cell cultures at the final concentration of 

100 µg/ml (35,36).  

TMVHPC were added to cell cultures at the final protein concentration of 3 µg/ml. In particular 

experiments, TMVHPC were treated with hyaluronidase (HAase), at the final concentration of 

100 U/ml, for 3 h at 37°C, with gentle shaking (5) and then centrifuged at 50,000×g for 15 

min at 4°C. Pellets were resuspended in serum-free RPMI 1640 medium. HAase-treated 

TMVHPC were added to cell cultures at the final protein concentration of 3 µg/ml.  

The presence of HA in TMVHPC suspension and supernatants from HPC-4 cell culture was 

determined using Hyaluronan Quantikine ELISA Kit (R&D Systems, Minneapolis, MN). 



The following inhibitors of the PI3K/Akt/mTOR pathway were used: PI3K (10 µM; LY-

294002; Sigma, St Louis, MO), Akt (10 µM; Akt inhibitor) and mTOR (10 ng/ml; 

rapamycin), both from Calbiochem (Darmstadt, Germany). 

 

Viability assay 

Elutriated monocyte and sorted monocyte subsets were cultured for 6 h in the presence of 

PI3K, Akt or mTOR inhibitor, or left untreated. Then, cells were labelled with Annexin V-

FITC Apoptosis Detection Kit II (BD Pharmingen), in order to detect apoptotic cells 

according the manufacturer’s protocol. Immediately before flow cytometry analysis 

(FACSCanto flow cytometer, Becton Dickinson), propidium iodide was added.  

 

Monocyte transduction with IL-10-promoter-containing adenoviral (AdV) 

vectors 

Monocytes were transduced with the IL-10 (-237) wt lux AdV vectors containing the IL-10 

gene promoter with STAT3 and IRF-1 motifs, reporter luciferase gene, and green fluorescent 

protein gene with -237 bp upstream of the IL-10 transcription start (37). The 1x106 monocytes 

or dummy sorted monocytes and monocyte subsets (CD14+ and CD16+) were incubated with 

AdV vectors for 2 h in serum-free medium in 24-well ultra-low attachment plates (Costar, 

Corning, Lowell, MA) at the 100 MOI. Then, FBS was added to cultures at the final 

concentration of 10%, and the cells were cultured overnight at 37°C, 5% CO2 in humidified 

atmosphere. Cells were then washed and resuspended in fresh medium with 10% FBS. A 

percentage of transduced cells was determined by the analysis of GFP-positive cells on 

FACSCanto flow cytometer. The average percentage of infected cells was 37 ± 12%. 

 

Reporter gene analysis 

Transduced cells were cultured in ultra-low attachment 96-well plates, at the concentration of 

2 × 105 cells/well in 200 µl of monocyte medium. Monocytes were preincubated with PI3K, 

Akt or mTOR inhibitors for 30 min at 37°C and then stimulated with TMVHPC, HA or 

TMVHPC treated with HAase, for 6 h at 37°C, or left intact. Cells were then harvested, lysed in 



Reporter Lysis Buffer (Promega, Madison, WI) and frozen at -20°C. Luciferase activity in 

cell lysates was determined using Luciferase Assay System (Promega) and Wallac Victor 2 

plate-reader (Perkin-Elmer, Turku, Finland). Protein concentration in each sample was 

determined by the Bradford method. Luciferase activity was normalised by protein 

concentration in each sample (cpm per 1 µg of protein) and the results were presented as a 

fold difference between normalised luciferase level in each sample, in comparison to the 

control.  

 

Western blot analysis. 

Elutriated monocytes were plated (3x106/well) on 12-well plates in RPMI 1640 (Sigma, St. 

Louis, MO) with 5% FBS and gentamycin (25 μg/ml). After 2 h of incubation at 37°C in 

humidified atmosphere containing 5 % CO2, PI3K inhibitor was added for 1 h to the 

appropriate wells. Next, monocytes were stimulated with TMVHPC (final concentration -3 

µg/ml) and HA (100 µg/ml) for 30 min. Monocytes were than harvested and lysed in M-PER 

lysing buffer (Pierce, Rockford, IL, USA), containing proteases inhibitors cocktail (Roche, 

Mannheim, Germany). The protein concentration was measured on micro-volume 

spectrophotometer Q5000 (QUAWELL, San Jose, CA, USA) using Bradford Dye Reagent 

(Bio-Rad, Hercules, CA, USA) and Bovine Gamma Globulin (Bio-Rad), used as a protein 

concentration standard. The 20 µg of isolated protein of each sample was mingled with 

NuPAGE LDS Sample Buffer (4X) (Life Technologies, Carlsbad, CA, USA) and NuPAGE 

Sample Reducing Agent (10X) (Life Technologies). Samples were heated (70°C, 10 minutes) 

and electrophoresed in 12% polyacrylamide gel containing SDS. Next, electrophoresed 

proteins were transferred to the polyvinylidene fluoride membrane (Bio-Rad). Then, after 

blocking for 1 h at room temperature in Tris buffered saline (TBS) with 0,1% Tween-20 

(Sigma, St. Louis, MO, USA) and 1% bovine serum albumin (BSA, Sigma), the membranes 

were incubated overnight at 4°C with monoclonal antibodies (dilution 1:1000): rabbit anti-

Akt, rabbit anti-phospho-Akt (Ser473), rabbit anti-mTOR, rabbit anti-phospho-mTOR 

(Ser2448) (all Cell Signalling, Beverly, MA, USA). As a loading control, rabbit anti-GAPDH 

antibodies (Cell Signalling) were used. After overnight incubation, membranes were washed 

in TBS supplemented with BSA and Tween-20 and incubated (1 h) in RT with secondary goat 

anti-rabbit antibodies (dilution 1:4000), conjugated with horseradish peroxidase (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA). The protein bands were visualized with the 

SuperSignal West Pico Chemiluminescence Substrate kit, as recommended by the 



manufacturer (Pierce, Rockford, IL, USA), and analysed with KODAK GEL LOGIC 1500 

Digital Imaging System (KODAK, Rochester, NY, USA). Densitometry analysis was done on 

the Western Blot results using KODAK MI SE 4.5 software to determine the abundance of 

studied protein. Saturation of GAPDH protein bands was used as control. Data are presented 

as a ratio between individual protein and GAPDH band saturation. 

 

Real-time PCR 

Dummy sorted monocytes and monocyte subsets (CD14+ and CD16+) were cultured in ultra-

low attachment 96-well plates in serum free medium, with TMVHPC or HA for 3 h at 37°C, or 

left untreated. Then, the total RNA was extracted from cells using RNeasy Protect Mini Kit 

(Qiagen GmbH, Hilden, Germany), according to the manufacturer’s protocol. cDNA was 

obtained from the RNA samples with Maloney Murine Leukemia Virus (M-MLV) reverse 

transcriptase (Sigma) and oligo-dT primer (Sigma), as specified by the manufacturer’s 

protocol. The quantitative polymerase chain reactions (PCR) for IL-10 and β-actin was 

performed using the LightCycler system (Roche Diagnostics, Mannheim, Germany), as 

previously described (7), with the following primer pairs: IL-10 sense, 5′-GGA-CTT-TAA-

GGG-TTA-CCT-GG and antisense, 5′-GAA-CTC-CTG-ACC-TCA-AGT-GA; β-actin sense, 

5′-GGA-TGC-AGA-AGG-AGA-TCA-CTG; and antisense, 5′-CGA-TCC-ACA-CGG-AGT-

ACT-TG. Each LightCycler PCR run consisted of 40 cycles with initial denaturation time of 

10 min at 95°C. The cycling profile for IL-10 was set at: 95°C for 10 sec, 62°C for 10 sec, 

72°C for 40 sec; and for β-actin: 95°C for 10 sec, 60°C for 60 sec. The fluorescent signals 

generated during the informative log-linear phase were used to calculate the relative amount 

of mRNA. The specificity of the amplified products was verified by the melting curve 

analysis. The mRNA expression was indicated as a fold difference from untreated dummy 

sorted monocytes, normalised to the β-actin expression level (∆∆Ct method).  

 

Determination of IL-10 secretion 

2x105 monocytes or dummy sorted monocytes and monocyte subsets (CD14+ and CD16+) 

were cultured in 96-well plates (BD Falcon, Franklin Lakes, NJ). The control cells were left 

untreated or preincubated for 30 min with PI3K, Akt or mTOR inhibitors and then TMVHPC, 



HA, or whole HPC-4 cells were added. The cells were cultured for 18 h at 37°C, 5% CO2 in 

humidified atmosphere. The cell culture supernatants were collected and IL-10 level was 

determined using Cytokine Bead Array (CBA) and Human IL-10 Flex Set (BD Biosciences, 

San Jose, CA, USA), according to manufacturer's protocol (lower limit of detection – 0,13 

pg/ml).  

 

Statistical analysis 

Statistical analysis was performed using Mann-Whitney, when applicable, or two-tailed 

Student t test using GraphPad InStat Software (GraphPad Soft Inc., La Jolla, CA). Differences 

were considered significant at p<0,05. Data represent the mean values ± SD of five 

independent experiments, each performed on cells of different donor. 

 



Results 

HA is involved in TMV-mediated IL-10 induction in monocytes 

Initially, we have determined the effect of TMVHPC on IL-10 induction in the whole 

population of human monocytes. TMVHPC significantly upregulated IL-10 protein production 

by monocytes from 46 ± 95 to 1344 ± 1251 pg/ml. Moreover, co-culture of monocytes with 

the HPC-4 cells resulted in even higher levels of IL-10 production (2463 ± 1014 pg/ml) (Fig 

1A). In order to test whether TMVHPC act via induction of the IL-10 gene promoter, we have 

transduced the monocytes with adenoviral vectors containing a luciferase reporter gene 

controlled by the IL-10 promoter containing intact wild-type binding sites for STAT3 and 

IRF-1 (37). In monocytes transduced with AdV vectors and stimulated with TMVHPC, the 

luciferase activity increased by an average of 5.2-folds when compared to unstimulated cells 

(Fig. 1B).  

Then, we asked whether HA, which is produced in abundance by tumor cells, may be 

responsible for IL-10 induction by TMV. First, we tested the TMVHPC for the presence of HA 

using ELISA and found out that the average HA concentration in TMVHPC suspension was 

0,51 ± 0,16 ng/µg per 1 µg of TMV (n=5). Moreover, HA presence was also detected in 

supernatants from HPC-4 cell culture (99 ± 14 ng/ml), as previously suggested (23). We then 

asked whether HA is able to induce the human IL-10 promoter and lead to production of IL-

10 protein in monocytes. Indeed, HA stimulated both IL-10 secretion (to 2240 ± 1327 pg/ml) 

(Fig. 2A) and IL-10 promoter-driven luciferase activity (2,3-fold increase) (Fig. 2B) in human 

monocytes, and both were statistically significant. The amount of IL-10 protein produced by 

monocytes in response to HA was somewhat higher when compared to TMVHPC, albeit not 

significant, while IL-10 promoter induction after HA stimulation was about 2-folds lower.  

Then we analysed whether TMV stimulation of IL-10 is mediated by HA. The 

induction of IL-10 protein production was halved when monocytes were stimulated with 

TMV that were pretreated with HAase for 3h, and the difference was statistically significant 

(Fig. 2A). Similar results were obtained in the case of IL-10 promoter activation in monocytes 

also stimulated with HAase-treated TMVHPC, as HAase treatment of TMVHPC resulted in 

significant reduction of IL-10 promoter activation (Fig. 2B). Although, the reduction of IL-10 

expression caused by HAase treatment of TMVHPC was no absolute, longer TMVHPC 



treatment with HAase (beyond 3h) did not reduce IL-10 expression any further (data not 

shown). 

 

TMV-driven induction of IL-10 in monocytes is mediated via PI3K/Akt/mTOR 

pathway 

Next, we asked whether the expression of IL-10 induced by TMVHPC and HA is 

mediated by the PI3K/Akt/mTOR signalling pathway. To address this, IL-10 protein 

production and its promoter induction were determined in the whole population of monocytes 

preincubated with specific inhibitors of this signalling pathway. First, a viability assay was 

performed to evaluate the toxicity of the inhibitors. The results revealed less than 10% of dead 

cells following the incubation of monocytes with the inhibitors, when compared to untreated 

cells. Therefore, the effects of the inhibitors on the IL-10 production, observed in our 

experiments, were specific and did not result from the cytotoxicity of the inhibitors. 

The co-culture of monocytes preincubated with the inhibitors of PI3K, Akt or mTOR, 

with HPC-4 cells, resulted in significant down-regulation of IL-10 protein production (1,4-, 

1,4- and 2-fold decrease, respectively, (p<0,001)) (Fig. 3). Similar results were obtained when 

monocytes were stimulated with HA (Fig. 4A, B). IL-10 secretion by monocytes stimulated 

with HA decreased 3,3-, 3,3- and 2,5-folds (Fig. 4A, p<0.001), while IL-10 promoter 

activation decreased 1,8-, 2,1- and 1,8-folds (Fig. 4B, p<0.05), when cells were preincubated 

with PI3K, Akt or mTOR inhibitors, respectively. Inhibition of the PI3K signalling cascade in 

monocytes stimulated with TMVHPC resulted in a considerable decrease in IL-10 expression. 

IL-10 protein production was reduced 3,3-, 2,5- and 1,7-folds when using PI3K, Akt or 

mTOR inhibitors, respectively (Fig. 4C, p<0.05). IL-10 promoter activation in monocytes 

stimulated with TMVHPC also decreased when cells were treated with the inhibitors (1,5-, 2- 

and 1,6-fold decrease in the case of PI3K, Akt or mTOR inhibitor, respectively), yet only in 

the case of Akt inhibitor, the difference was statistically significant (Fig. 4D).  

The activation of PI3K/Akt/mTOR signalling pathway in monocytes was confirmed in 

Western-blot analysis (Fig. 5). Unphosphorylated and phosphorylated Akt and mTOR 

proteins were analysed in monocytes stimulated with TMVHPC or HA after PI3K inhibition. 

The expression of phospho-Akt and phospho-mTOR was down-regulated when monocytes 

were pre-treated with PI3K inhibitor. However, although the effect of PI3K inhibitor on 



TMV and HA-induced phospho-Akt activation is obvious, this effect on phospho-mTOR 

inhibition was rather moderate. That is why, we have measured the intensity of mTOR and 

phospho-mTOR bands using densitometry analysis and the results were normalized according 

to GAPDH intensity (see Supplementary Fig. 1). As a result, we have noticed significant 

reduction of phospho-mTOR bands intensity in the case of MO cultured alone and MO 

stimulated with TMVHPC (decrease of 38% and 36%, respectively). Nonetheless, in the case of 

HA stimulation, the PI3K inhibitor had only slight effect on phospho-mTOR band intensity 

(decrease of 3%; Supplementary Fig. 1B). In contrast, the level of unphosphorylated mTOR 

was not reduced when monocytes where preincubated with PI3K inhibitor (Supplementary 

Fig. 1A). 

 

TMV and HA-mediated IL-10 induction in monocyte subsets 

In order to determine, which monocyte subset (CD14+  classical monocytes or CD16+ 

intermediate/non-classical monocytes) is responsible for IL-10 production in response to 

TMVHPC or HA stimulation, we have analysed IL-10 promoter activity, mRNA expression 

and protein production in the cells of both sorted subpopulations.  

After TMVHPC and HA stimulation we observed increased IL-10 promoter activity in 

classical monocytes with a 4,4- and 2-fold increase, respectively. In the CD16-positive 

monocytes there was only a 2- and 1,1-fold increase after stimulation with TMVHPC and HA, 

respectively (basal levels of luciferase activity was 46 ± 18 and 4 ± 1 RLU/μg of protein, for 

CD14+ and CD16+ monocytes, respectively), however, due to a considerable variation between 

experiments, the induction of the promoter activity was not significant (Fig. 6A). A clearer 

pattern emerged at the IL-10 mRNA level. Here, IL-10 expression increased 2,2-folds in HA-

stimulated and 1,9- folds in TMVHPC-stimulated CD14+ monocytes (Fig 6B, p<0,001 and 

p<0,01, respectively), while in CD16+ monocytes there was no induction. The IL-10 mRNA 

expression of untreated CD14+ and CD16+ monocytes was similar (∆Ct value: 11,3 ± 1,9 for 

CD14+ monocytes and 10,21 ± 1,8 for CD16+ monocytes), indicating that basal IL-10 

expression in these subsets is comparable, yet only CD14+ monocytes responded to TMVHPC 

and HA stimulation. 

The average level of IL-10 protein produced by CD14+ monocytes was 71 ± 20 pg/ml 

in unstimulated cells. HA treatment resulted in an increase of IL-10 production to 605 ± 418 



pg/ml, while in monocytes treated with TMVHPC an increase to 619 ± 904 pg/ml was 

observed. By contrast, the CD16+ monocytes show negligible amounts of IL-10 protein 

production when untreated (about 2 pg/ml) and there was no increase after stimulation by 

either HA or TMVHPC (Figure 6C). These data demonstrate that in response to HA or 

TMVHPC stimulation, the classical (CD14++CD16-) monocytes are the main source of IL-10. 

To summarise, our findings suggest that IL-10 production in CD14+ monocytes is 

induced by TMV and is mediated by HA via the PI3K/Akt/mTOR pathway (Fig.6). 

 



Discussion 

Previous findings show that both, tumor cells and TMV released by these cells, are 

able to induce IL-10 expression in monocytes at both the mRNA and protein level (5-7, 38). 

IL-10 promotes the differentiation of monocytes to mature macrophages and blocks their 

differentiation into dendritic cells (39). High frequency of TIMs has been usually associated 

with poor prognosis in cancer patients (40). Moreover, macrophages exposed to IL-10 

polarise into M2 cells that reveal poor anti-tumor response (41). Therefore, the present study 

investigated the molecular mechanism of IL-10 induction in primary human monocytes, and 

in particular: i) which component of TMVHPC shedded by HPC-4 tumor cells is responsible 

for IL-10 induction in monocytes, and ii) which signalling pathways are involved in this 

process. Our findings suggest that IL-10 stimulation observed in monocytes exposed to 

TMVHPC is mediated by low molecular weight HA carried by these microvesicles. The 

presence of HA in TMVHPC suspension has been confirmed. Moreover, IL-10 promoter 

activation, IL-10 gene expression and cytokine production was significantly induced by 

TMVHPC and HA, as well as by HPC-4 tumor cells. The level of IL-10 induction may differ 

between TMVHPC and HPC cells stimulation, since TMV only mimic tumor cells presence. 

Pre-treatment of TMVHPC with HAase reduced IL-10 expression by half, when compared to 

untreated TMVHPC. Thus, our data strongly suggest that HA carried by TMVHPC may be 

involved in interactions of TMV with monocytes and thus corroborate previous reports (7). 

Besides, we found HA in TMV originated not only from HPC-4 cells but also from another 

cancer cell lines, e.g. colon cancer cell lines (data not shown). It has been shown that CD44, a 

major receptor for HA, is expressed on monocytes and takes part in interactions of monocytes 

with cancer cells, mediating TMV-induced release of TNF, IL-1 and probably ROI (7, 23, 

42). Yet, HA involvement in IL-10 induction has never been investigated. 

The observed decrease of IL-10 induction after addition of TMVHPC pre-treated with 

HAase did not reach the level observed in control samples. It may suggest that either HA 

stimulation was not fully efficient, or, apart from HA, another, yet still unknown factor/s 

carried by TMVHPC may be also associated with IL-10 induction.  

In our studies, HA more efficiently induced IL-10 secretion, while IL-10 gene 

promoter was stimulated more effectively by TMVHPC. This observation may support the 

suggestion that HA is not the only component of TMVHPC that is responsible for IL-10 gene 

induction. It is plausible that the presence of only STAT3 and IRF1 binding sites, contained 



by IL-10 promoter in AdV vectors used in these studies, is insufficient for excessive HA 

induction of such a construct. Apart from STAT3 and IRF1, other transcription factors 

binding sites have been identified in IL-10 promoter, such as specific protein 1 (SP1), SP3, 

and CCAAT/enhancer binding protein-β (C/EBPβ) (43-45), which may suggest that HA is 

able to activate one of these factors. On the other hand, the additional, still unknown 

component of TMVHPC that can also induce IL-10 gene expression, may act mainly through 

STAT3 and/or IRF1 transcription factors.  

Moreover, it has been shown that IL-10 expression is also regulated post-

transcriptionally, through IL-10 mRNA stabilization dependant on regulation of its 3′-UTR. In 

unstimulated cells, the constitutively expressed IL-10 mRNA is kept at low levels through 

mRNA-destabilizing signals, while upon activation, IL-10 transcription is up-regulated 

through activation of IL-10 promoter, and then IL-10 mRNA levels are further increased 

through RNA stabilization controlled by regulatory regions located in the 3′-UTR (46). Thus, 

it cannot be excluded, that the differences in IL-10 secretion levels and promoter activation, 

mediated by TMVHPC and HA, observed in our studies, might result from differences in IL-10 

mRNA de- or stabilizing signals induced by stimulation with each of the factors.  

The IL-10 gene expression and/or protein production after TMVHPC, HA and HPC-4 

tumor cells stimulation was significantly down-regulated when monocytes were preincubated 

with the inhibitors of PI3K, Akt or mTOR. What is more, Western-blot analysis with PI3K 

inhibition demonstrated the specificity of PI3K/Akt/mTOR signalling cascade activated in 

monocytes, mostly by TMVHPC and to a lesser extent by HA. These data strongly suggest that 

IL-10 induction in monocytes by TMVHPC carrying HA is PI3K/Akt/mTOR pathway-

dependent which is consistent with previous data where PI3K and Akt contribution to IL-10 

production has been demonstrated in monocytes and macrophages (47, 48), while inhibition 

of mTOR down-regulates expression of IL-10 in human monocytes (9). Also, TLR activation 

results in IL-10 synthesis by the engagement of the Akt/mTOR pathway and the MAP kinase 

p38 (49). However, it has not been shown before that HA is able to activate the 

PI3K/Akt/mTOR pathway in monocytes. Wu Y. et al. indicated that HA fragments released 

by tumor cells activate neutrophils through the TLR4/PI3K/Akt signalling pathway (50). In 

PBMC and dendritic cells, the stimulatory effect of HA was mediated also by TLR4 and 

included phosphorylation of p38 and p42/p44 MAPK followed by translocation of NF-κB to 

the nucleus (17, 51). In the case of TMV-mediated IL-10 production by monocytes, Akt 

phosphorylation has been already reported (6).  



Furthermore, our results indirectly suggest that IL-10 expression, mediated by the 

PI3K/Akt/mTOR signalling pathway, is mediated - among others - by STAT3 and IRF-1 

transcription factors. The luciferase reporter vectors, used in our studies, contain IL-10 

promoter composed of only STAT3 and IRF-1-binding motifs, so that activation of the 

promoter by TMVHPC or HA stimulation must result from one or both of the transcription 

factors activation. Our previous observations could confirm STAT3 involvement in IL-10 

induction in monocytes, since we have observed even before STAT3 phosphorylation in 

monocytes stimulated by TMV (7).  

Based on the previous findings reporting TNF induction in monocytes by TMV (7), 

we have also determined whether the observed mechanism of activation is also involved in 

TNF production. In fact, both, TMVHPC and HA, stimulated TNF protein production in 

monocytes and this was independent of the PI3K/Akt/mTOR signalling (data not shown). 

Therefore, we suggest that the PI3K/Akt/mTOR dependent induction of IL-10 production 

differs substantially from that observed in the case of TNF induction. 

In order to determine, which monocyte subset is responsible for IL-10 production after 

HA or TMVHPC stimulation, we have examined IL-10 production by CD14+ and CD16+ 

subpopulations of monocytes. Previous reports indicated that classical (CD14++CD16-) 

monocytes, in response to LPS, produced more IL-10 in comparison to non-classical 

(CD14+CD16++) monocytes (52, 53). It has been shown that CD16+ monocytes stimulated 

with HPC-4 tumor cells show lower IL-10 release, in comparison to CD14+ cells (30). When 

monocyte subsets are treated with TMVHPC, secretion of IL-10 by CD16+ cells is also 

significantly lower than that observed in the whole monocyte population and CD14+ cells 

(25). To extend these reports, we have determined IL-10 production in monocyte subsets at 

each level of protein expression (promoter activation, mRNA expression and protein 

secretion). As a result, IL-10 gene expression, IL-10 mRNA production and protein 

production after TMVHPC or HA stimulation was significantly higher in CD14+ subset. The 

differences in IL-10 expression in monocyte subsets seem not to result from differential 

expression of CD44, since the expression level of CD44 on CD14+ and CD16+ monocytes is 

similar (data not shown). These data clearly corroborate previous findings that CD14+ 

monocytes are the main producers of IL-10 among the whole monocyte population.  

Our observations may have also some clinical relevance. They may, at least partially, 

explain the observations that increased serum level of IL-10 is an independent unfavourable 



prognostic factor in patients with advanced neoplastic disease, i.e. gastric cancer (54), which 

may be a result of monocytes overstimulation for IL-10 production by TMV known to be 

elevated in circulation of advanced tumor-bearing hosts (55, 56). Indeed, we have also noticed 

that TMV released by gastric cancer cell lines, e.g. cell lines 1401 and 1415, derived in our 

laboratory, induce IL-10 promoter activation, mRNA expression and protein production in 

monocytes at a similar level to TMVHPC (data not shown).  

In conclusion, our findings demonstrate that TMV-induced IL-10 production in 

monocytes, mainly CD14+ cells, is mediated by HA via the PI3K/Akt/mTOR pathway. 
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Figure legends 

 

Fig. 1. Effect of TMVHPC or HPC-4 cells on IL-10 production and promoter activation in 

monocytes. Monocytes were cultured with TMVHPC or HPC-4 cells for 18h. Release of IL-10 

was significantly elevated after TMVHPC or HPC-4 cell stimulation, in comparison to 

untreated monocytes (A). Monocytes were transduced with AdV vector containing IL-10 

promoter, with STAT3 and IRF1 motifs, and luciferase gene. The results are presented as a 

relative level, represent a fold difference between normalized luciferase level in samples and 

the control. The IL-10 promoter induction was significantly elevated after TMVHPC 



stimulation, in comparison to untreated TMVHPC (B). Statistical analysis was performed using 

Mann-Whitney (A) or two-tailed Student t test (B).  

 

Fig. 2. Effect of HA stimulation on IL-10 production and promoter activation in monocytes. 

Monocytes were stimulated with HA, TMVHPC or HAase-treated TMVHPC for 18h. Release of 

IL-10 was significantly elevated after HA and TMVHPC stimulation, in comparison to 

untreated monocytes, while HAase treatment of TMVHPC resulted in lesser IL-10 production, 

when compared to untreated TMVHPC (A). Monocytes were transduced with AdV vector 

containing IL-10 promoter, with STAT3 and IRF1 motifs, and luciferase gene. The results are 

presented as a relative level, represent a fold difference between normalized luciferase level in 

samples and the control. IL-10 promoter activation was significantly elevated after HA and 

TMVHPC stimulation, in comparison to untreated monocytes, while HAase treatment of 

TMVHPC resulted in lesser IL-10 production and promoter activation, when compared to 

untreated TMVHPC (B). Statistical analysis was performed using Mann-Whitney (A) or two-

tailed Student t test (B). 

 

Fig. 3. Effect of inhibition of PI3K, Akt or mTOR on HPC-4 cell-stimulated IL-10 secretion. 

IL-10 level was significantly decreased when monocytes were pre-incubated with selected 

protein kinase inhibitors. The results are presented as a relative level, represent a fold 

difference between IL-10 secretion level in each samples and the control. Statistical analysis 

was performed using two-tailed Student t test. 

 



Fig. 4. The effect of inhibition of PI3K, Akt or mTOR on HA or TMVHPC-stimulated IL-10 

production – IL-10 protein production (A,C) and IL-10 promoter activation (B,D). Monocytes 

were preincubated with inhibitors of PI3K, Akt or mTOR and then HA (A,B) or TMVHPC 

(C,D) was added. IL-10 protein production following stimulation with HA (A) or TMVHPC 

(C) was significantly decreased when monocytes were pre-incubated with PI3K, Akt or 

mTOR inhibitors. IL-10 promoter induction was significantly decreased when HA-stimulated 

monocytes were pre-incubated with appropriate inhibitors (B). In the case of stimulation of 

monocytes with TMVHPC, the promoter induction was also down-regulated after inhibition of 

analysed kinases, yet the difference was only statistically significant after use of Akt inhibitor 

(D). The results are presented as a relative level, represent a fold difference between IL-10 

secretion level in each samples and the control (A,C) or as a relative level representing a fold 

difference between normalized luciferase level in each samples and the control (B,D). 

Statistical analysis was performed using two-tailed Student t test. 

 

Fig. 5. Western-blot analysis of unphosphorylated and phosphorylated Akt and mTOR 

proteins expression in monocytes. Monocytes were pre-treated with PI3K inhibitor and then 

stimulated with TMVHPC or HA. The PI3K inhibition results in Akt and mTOR down-

regulation following TMVHPC/HA stimulation. One representative experiment out of four 

performed is presented. 

 

Fig. 6. Effect of TMVHPC or HA stimulation on IL-10 production by CD14+ or CD16+ 

monocyte subsets. The induction of IL-10 promoter was observed in each subset after 

TMVHPC or HA stimulation, yet lower in case of CD16+ subset. The results are presented as a 

relative level, which represents a fold difference between normalized luciferase level in each 



samples and the control (A). The expression of IL-10 mRNA after stimulation with TMVHPC 

and HA was significantly higher in CD14+ monocyte subset than observed in CD16+ cells. 

The figure presents relative level, showing the fold difference between normalized IL-10 

mRNA level in each sample and the control (B). In response to TMVHPC or HA stimulation, 

IL-10 secretion was upregulated in CD14+ monocytes, while CD16+ cells did not respond to 

the stimulation. The amount of secreted IL-10 by CD14+ subset was also notably higher than 

that secreted by CD16+ subset (C). Statistical analysis was performed using two-tailed Student 

t test. 

 

Fig. 7. Scheme of proposed mechanism of IL-10 production activation in monocytes. Tumor 

cells shed TMV that contain low weight HA. HA molecules stimulate IL-10 production by 

activation of PI3K/Akt/mTOR signaling pathway that may act through STAT3 and IRF-1 

transcription factors. The latter, activate IL-10 gene promoter, what leads to IL-10 

transcription activation and, in the end, IL-10 protein production and secretion. 
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