53 research outputs found

    Intervention Motion Program Of Rhythmic Gymnastics And Its Impact On The Development Of Motor Abilities

    Get PDF
    The aim of this study is to present the research results of intervention motion program with rhythmic gymnastics´ content on chosen motor abilities of early school age pupils. The program was performed in school within the educational process of physical education. The experiment was realized with selected pupils in the 4th classes at primary schools in Banská Bystrica. The evaluation of motor abilities was realized. Thanks to the chosen standardized tests. The content analysis of motor tests´ results show a significant (p < 0.01) impact of applied motion program on the level of chosen coordination abilities of pupils with recommendation to the school practice

    Contemporary Enzyme-Based Methods for Recombinant Proteins In Vitro Phosphorylation

    No full text
    Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for understanding the understanding of the disease pathogenesis and for the design of new therapeutic strategies. Recent availability of various kinases at an affordable price differs in activity, specificity, and stability and provides the opportunity of studying and modulating this reaction in vitro. We can exploit this knowledge for other applications. There is an enormous potential to produce fully decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely related is the possibility to exploit current achievements and develop new safe and efficacious vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value that immobilized kinases provide

    Patent protection strategies

    No full text
    It is widely recognized that the pharmaceutical industry faces serious financial challenges. Large numbers of blockbuster drugs are losing patent protection and going generic. The pipeline of new drugs is too sparse to fill the gap and generate a platform for future growth. Moreover, many of the new products are biologics with much narrower target patient populations and comparatively higher prices relative to traditional pharmaceuticals. So now the time has come for pharmaceutical scientists to have a better understanding of patent fundamentals. This need is illustrated by analyses of key scientific and legal issues that arose during recent patent infringement cases involving Prozac, Prilosec, and Buspar. Facing this scenario, the pharmaceutical industry has moved to accelerate drug development process and to adopt at the same time different strategies to extend the life time of the patent monopoly to provide the economic incentives and utilizing it for drug discovery and development. This review covers the need of patent protection and various strategies to extend the patent

    A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development

    No full text
    It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling

    Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion

    No full text
    Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow1,2. Here we show in zebrafish primary germ layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase, and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. Once tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension stabilizing E-cadherin-actin complexes at the contact

    Controlled proteolysis of normal and pathological prion protein in a microfluidic chip.

    No full text
    A microreactor for proteinase K (PK)-mediated protein digestion was developed as a step towards the elaboration of a fully integrated microdevice for the detection of pathological prion protein (PrP). PK-grafted magnetic beads were immobilized inside a polydimethylsiloxane (PDMS) microchannel using a longitudinal magnetic field parallel to the flow direction and a magnetic field gradient, thereby forming a matrix for enzymatic digestion. This self-organization provided uniform pore sizes, a low flow resistance and a strong reaction efficiency due to a very thin diffusion layer. The microreactor's performance was first evaluated using a model substrate, succinyl-ala-ala-ala-paranitroanilide (SAAAP). Reaction kinetics were typically accelerated a hundred-fold as compared to conventional batch reactions. Reproducibility was around 98% for on-chip experiments. This microsystem was then applied to the digestion of prion protein from brain tissues. Controlled proteolysis could be obtained by varying the on-chip flow rate, while a complete proteolysis of normal protein was achieved in only three minutes. Extracts from normal and pathological brain homogenates were finally compared and strong discrimination between normal and pathological samples was demonstrated
    • …
    corecore