285 research outputs found

    The effects of room design on computer-supported collaborative learning in a multi-touch classroom.

    Get PDF
    While research indicates that technology can be useful for supporting learning and collaboration, there is still relatively little uptake or widespread implementation of these technologies in classrooms. In this paper, we explore one aspect of the development of a multi-touch classroom, looking at two different designs of the classroom environment to explore how classroom layout may influence group interaction and learning. Three classes of students working in groups of four were taught in the traditional forward-facing room condition, while three classes worked in a centered room condition. Our results indicate that while the outcomes on tasks were similar across conditions, groups engaged in more talk (but not more off-task talk) in a centered room layout, than in a traditional forward-facing room. These results suggest that the use of technology in the classroom may be influenced by the location of the technology, both in terms of the learning outcomes and the interaction behaviors of students. The findings highlight the importance of considering the learning environment when designing technology to support learning, and ensuring that integration of technology into formal learning environments is done with attention to how the technology may disrupt, or contribute to, the classroom interaction practices

    Predicting complicated appendicitis based on clinical findings: the role of Alvarado and appendicitis inflammatory response scores

    Get PDF
    PURPOSE: The pre-interventional differentiation between complicated and uncomplicated appendicitis is decisive for treatment. In the context of conservative therapy, the definitive diagnosis of uncomplicated appendicitis is mandatory. This study investigates the ability of clinical scoring systems and imaging to differentiate between the two entities. METHODS: This is a retrospective analysis of two cohorts from two tertiary referral centers in Switzerland and Germany. All consecutive patients underwent appendectomy between January 2008 and April 2013 (in the first cohort) or between January 2017 and June 2019 (the second cohort). Exclusion criteria did not apply as all patients found by the database search and received an appendectomy were included. Diagnostic testing and calculation of a receiver operating curve were performed to identify a cutoff for clinical scores that resulted in a minimum sensitivity of 90% to detect complicated appendicitis. The cutoff was combined with additional diagnostic imaging criteria to see if diagnostic properties could be improved. RESULTS: Nine hundred fifty-six patients were included in the analysis. Two hundred twenty patients (23%) had complicated appendicitis, and 736 patients (77%) had uncomplicated appendicitis or no inflammation. The complicated appendicitis cohort had a mean Alvarado score of 7.03 and a mean AIR of 5.21. This compared to a mean Alvarado of 6.53 and a mean AIR of 4.07 for the uncomplicated appendicitis cohort. The highest Alvarado score with a sensitivity of > 90% to detect complicated appendicitis was >== 5 (sensitivity = 95%, specificity 8.99%). The highest AIR score with a sensitivity of > 90% to detect complicated appendicitis was >== 3 (sensitivity 91.82%, specificity 18.53). The analysis showed that additional CT information did not improve the sensitivity of the proposed cut-offs. CONCLUSION: AIR and Alvarado scores showed limited capability to distinguish between complicated and uncomplicated appendicitis even with additional imaging in this retrospective cohort. As conservative management of appendicitis needs to exclude patients with complicated disease reliably, appendectomy seems until now to remain the safest option to prevent undertreatment of this mostly benign disease

    Gluon Radiation and Coherent States in Ultrarelativistic Nuclear Collisions

    Get PDF
    We explore the correspondence between classical gluon radiation and quantum radiation in a coherent state for gluons produced in ultrarelativistic nuclear collisions. The expectation value of the invariant momentum distribution of gluons in the coherent state is found to agree with the gluon number distribution obtained classically from the solution of the Yang-Mills equations. A criterion for the applicability of the coherent state formalism to the problem of radiation in ultrarelativistic nucleus-nucleus collisions is discussed. This criterion is found to be fulfilled for midrapidity gluons with perturbative transverse momenta larger than about 1-2 GeV and produced in collisions between valence partons.Comment: 15 pages, 6 figures, RevTeX (with epsf, psfig style files

    Strange Messages: Chemical and Thermal Freeze-out in Nuclear Collisions

    Get PDF
    Thermal models are commonly used to interpret heavy-ion data on particle yields and spectra and to extract the conditions of chemical and thermal freeze-out in heavy-ion collisions. I discuss the usefulness and limitations of such thermal model analyses and review the experimental and theoretical evidence for thermalization in nuclear collisions. The crucial role of correlating strangeness production data with single particle spectra and two-particle correlation measurements is pointed out. A consistent dynamical picture for the heavy-ion data from the CERN SPS involves an initial prehadronic stage with deconfined color and with an appreciable isotropic pressure component. This requires an early onset of thermalization.Comment: 15 pages, 2 figures, talk given at Strange Quark Matter '98, Padova, Italy, 20-24 July 1998, to be published in J. Phys. G 25; final version with updated reference

    Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning

    Full text link
    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students' and physicists' talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor. We hypothesize that students categorize concepts into ontological categories based on the grammatical structure of physicists' language. We also hypothesize that students over-extend and misapply conceptual metaphors in physicists' speech and writing. Using our theory, we will show how, in some cases, we can explain student difficulties in quantum mechanics as difficulties with language.Comment: Accepted for publication in Phys. Rev. ST:PE

    Thermal analysis of hadron multiplicities from relativistic quantum molecular dynamics

    Full text link
    Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multistrange baryons and antibaryons. We also looked at the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.Comment: 12 pages, 2 figures, uses REVTEX, only misprint and stylistic corrections, to appear in Physical Review

    Quantum radiation in external background fields

    Full text link
    A canonical formalism is presented which allows for investigations of quantum radiation induced by localized, smooth disturbances of classical background fields by means of a perturbation theory approach. For massless, non-selfinteracting quantum fields at zero temperature we demonstrate that the low-energy part of the spectrum of created particles exhibits a non-thermal character. Applied to QED in varying dielectrics the response theory approach facilitates to study two distinct processes contributing to the production of photons: the squeezing effect due to space-time varying properties of the medium and of the velocity effect due to its motion. The generalization of this approach to finite temperatures as well as the relation to sonoluminescence is indicated.Comment: 20 page

    Chemical equilibration of strangeness

    Get PDF
    Thermal models are very useful in the understanding of particle production in general and especially in the case of strangeness. We summarize the assumptions which go into a thermal model calculation and which differ in the application of various groups. We compare the different results to each other. Using our own calculation we discuss the validity of the thermal model and the amount of strangeness equilibration at CERN-SPS energies. Finally the implications of the thermal analysis on the reaction dynamics are discussed.Comment: 23 pages, LaTeX (figures included); Talk given at the Int. Symposium on Strangeness in Quark Matter 1997, Santorini (Greece), April 199

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    mspecLINE: bridging knowledge of human disease with the proteome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Public proteomics databases such as PeptideAtlas contain peptides and proteins identified in mass spectrometry experiments. However, these databases lack information about human disease for researchers studying disease-related proteins. We have developed mspecLINE, a tool that combines knowledge about human disease in MEDLINE with empirical data about the detectable human proteome in PeptideAtlas. mspecLINE associates diseases with proteins by calculating the semantic distance between annotated terms from a controlled biomedical vocabulary. We used an established semantic distance measure that is based on the co-occurrence of disease and protein terms in the MEDLINE bibliographic database.</p> <p>Results</p> <p>The mspecLINE web application allows researchers to explore relationships between human diseases and parts of the proteome that are detectable using a mass spectrometer. Given a disease, the tool will display proteins and peptides from PeptideAtlas that may be associated with the disease. It will also display relevant literature from MEDLINE. Furthermore, mspecLINE allows researchers to select proteotypic peptides for specific protein targets in a mass spectrometry assay.</p> <p>Conclusions</p> <p>Although mspecLINE applies an information retrieval technique to the MEDLINE database, it is distinct from previous MEDLINE query tools in that it combines the knowledge expressed in scientific literature with empirical proteomics data. The tool provides valuable information about candidate protein targets to researchers studying human disease and is freely available on a public web server.</p
    • …
    corecore