6 research outputs found

    Die Bedeutung von Protein Kinase D 1 in der Funktion von murinem Fettgewebe unter physiologischen und pathophysiologischen Bedingungen

    Get PDF
    Adipocytes are specialized cells found in vertebrates to ensure survival in terms of adaption to food deficit and abundance. However, their dysfunction accounts for the pathophysiology of metabolic diseases such as T2DM. Preliminary data generated by Mona Löffler suggested that PKD1 is involved in adipocyte function. Here, I show that PKD1 expression and activity is linked to lipid metabolism of murine adipocytes. PKD1 gene expression and activity was reduced in murine white adipose tissue upon fasting, a physiological condition which induces lipolysis. Isoproterenol-stimulated lipolysis in adipose tissue and 3T3-L1 adipocytes reduced PKD1 gene expression. Silencing ATGL in adipocytes inhibited isoproterenol-stimulated lipolysis, however, the β-adrenergic stimulation of ATGL-silenced adipocytes lowered PKD1 expression levels as well. Adipose tissue of obese mice exhibited high PKD1 RNA levels but paradoxically lower protein levels of phosphorylated PKD1-Ser916. However, HFD generated a second PKD1 protein product of low molecular weight in mouse adipose tissue. Furthermore, constitutively active PKD1 predominantly displayed nuclear localization in 3T3-L1 adipocytes containing many fat vacuoles. However, adipocytes overexpressing non-functional PKD1 contained fewer lipid droplets and PKD1-KD was distributed in cytoplasm. Most importantly, deficiency of PKD1 in mouse adipose tissue caused expression of genes involved in adaptive thermogenesis such as UCP-1 and thus generated brown-like phenotype adipocytes. Thus, PKD1 is implicated in adipose tissue function and presents an interesting target for therapeutic approaches in the prevention of obesity and associated diseases.Adipozyten sind spezialisierte Zellen der Wirbeltiere, die das Überleben durch Anpassung an Nahrungsmangel und Nahrungsüberfluss gewährleisten. Eine Dysfunktion von Adipozyten bedingt jedoch die Pathophysiologie von Stoffwechselerkrankungen wie dem T2DM. Vorläufige Ergebnisse von Mona Löfflers Versuchen zeigten, dass PKD1 in der Funktion von Adipozyten involviert ist. Innerhalb dieser Arbeit konnte dargestellt werden, dass die Expression und Aktivität von PKD1 in murinen Adipozyten an den Lipidmetabolismus gekoppelt ist. Beim Hungern von murinem weißen Fettgewebe, einem physiologischen Zustand, der Lipolyse induziert, war die Genexpression von PKD1 reduziert. Isoproterenol-stimulierte Lipolyse führte ebenfalls zu verminderter Expression von PKD1 in murinen weißen Fettgewebe und 3T3-L1 Adipozyten. In ATGL-silenced Adipozyten war die Isoproterenol-stimulierte Lipolyse zwar inhibiert, allerdings wurde die Genexpression von PKD1 durch die β-adrenerge Stimulation ebenfalls vermindert. Fettgewebe von adipösen Mäusen hingegen wiesen hohe PKD1 RNA Level sowie einen niedrigen Proteingehalt der phosphorylierten Form PKD1-Ser916 auf. Fettreiche Ernährung von Mäusen generierte in Fettgewebe jedoch ein weiteres Produkt von PKD1 mit niedrigem Molekulargewicht im Western Blot. Des Weiteren wurde dargestellt, dass konstitutiv aktives PKD1 in 3T3-L1 Adipozyten vorwiegend nuklear lokalisiert war und diese Adipozyten einen hohen Gehalt von Fettvakuolen aufwiesen. Adipozyten, die funktionsloses PKD1 exprimierten, enthielten wenige Lipidtropfen und PKD1-KD war im Cytoplasma verteilt. Vor allem zeigte diese Arbeit, dass die Deletion von PKD1 spezifisch in murinem Fettgewebe die Expression von Genen wie UCP-1 verursachte, die eine Rolle in adaptiver Thermogenese spielen, und dadurch einen brown-like Phänotypen generierte. Zusammenfassend ist PKD1 in die Funktionen von Adipozyten verwickelt und stellt ein attraktives Ziel für therapeutische Ansätze in der Prävention von Übergewicht und damit assoziierten Erkrankungen dar

    Advancing technology environments for learning communities

    No full text
    This symposium will examine and envision new possibilities to design next generation technology environments for advancing the study of classroom learning communities as a pedagogical approach. Of the many different kinds of technology environments used in educational research, technology designed for learning communities represents a unique genre in which the environments must support particular epistemic values, modes of learning, and discourse. The talks in this session represent five distinct projects, each focusing on the features of a technological environment and how they support learning communities (e.g., making learners’ ideas salient; representing community knowledge; enabling idea interaction across boundaries; fostering a sense of progress). Across the papers, we identify cross-cutting research priorities and common technological elements that characterize this pivotal research area, with implications for future research and the development of communitysupporting technology

    Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model

    Get PDF
    The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic β-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment

    Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity

    No full text
    Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others, activates G-protein coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancerbinding protein (C/EBP)-α and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, loss of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications
    corecore