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1 Introduction	

1.1 Adipose	tissue	

Adipose	 tissue	 consists	 of	 adipocytes	 which	 are	 cells	 specialized	 in	 storing	 large	

quantities	 of	 energy	 found	 in	 vertebrates	 [1].	 Each	 adipocyte	 is	 surrounded	 by	

connective	 tissue	 of	 basal	 lamina,	 reticular	 and	 collagen	 fibers	 that	 hold	 the	 cells	

together	 as	 connective	 tissue.	 Segments	 of	 adipose	 tissue	 are	 provided	with	 nerves	

and	 blood	 vessels	 which	 ensure	 communication	 with	 other	 cells	 and	 tissues	 of	 the	

human	 body	 [2].	 Depending	 on	 the	 gender,	 age	 and	 health	 status	 the	 content	 of	

adipose	 tissue	 in	 the	body	can	vary	 from	approximately	6%	 in	man	athletes	 to	more	

than	32%	in	obese	 individuals	[3].	Despite	acting	as	an	energy	storage	adipose	tissue	

fulfils	 several	 important	 functions	 in	 the	 organism.	 Adipocytes	 contribute	 to	 the	

maintenance	 of	 core	 body	 temperature,	 hormonal	 homeostasis	 and	 serve	 as	 a	

mechanical	protection	for	other	organs	[1].	

1.1.1 Types	of	adipose	tissue	

There	are	three	different	types	of	adipose	tissue	distributed	differently	throughout	the	

body:	 White	 adipocytes,	 which	 make	 up	 the	 highest	 amount,	 brown,	 and	 beige	

adipocytes.	

The	localization	of	white	adipose	tissue	(WAT)	in	the	human	body	distinguishes	part	of	

its	function	[1].	The	main	function	of	calorie	storage	and	energy	homeostasis	is	met	by	

subcutaneous	and	visceral	WAT	[2].	However,	subcutaneous	WAT	was	found	to	have	

protective	benefits	on	glucose	homeostasis,	insulin	sensitivity,	and	triglyceride	plasma	

levels	 whereas	 WAT	 located	 intra-abdominal	 (visceral)	 appears	 to	 negatively	 affect	

metabolism	 [4].	 Furthermore,	 subcutaneous	 adipose	 tissue	 serves	 as	 isolator	 from	

temperature	changes	 in	environment	and	protects	from	loss	of	body	heat.	Depots	of	

adipose	 tissue	also	cushion	 important	parts	of	 the	body	exposed	 to	high	mechanical	

pressure	such	as	 the	heel.	Additionally,	 fat	depots	ensure	 the	position	of	organs	e.g.	

eyes	 in	 the	orbita,	 kidneys	 in	 the	 renal	 bed,	 and	 coronary	 vessels	 around	 the	heart.	

These	depots	of	adipose	tissue	are	only	reduced	under	extreme	nutritional	deficiency	

conditions	such	as	malnutrition	or	cachexia	resulting	from	cancer	disease	[2].		
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In	 humans,	 depots	 of	 brown	 adipose	 tissue	 (BAT)	 can	 be	 found	 predominantly	 in	

infants.	Their	ability	to	produce	heat	through	nonshivering	thermogenesis	presumably	

is	an	evolutionary	advantage	after	birth.	Although	for	a	long	time	it	was	assumed	that	

BAT	disappears	with	adulthood,	new	evidence	was	found	that	it	only	diminishes	with	

age	 [1,	 5].	 18F-FDG-PET/CT	 scans	 revealed	 remaining	BAT	 at	 supraclavicular,	 cervical,	

axillary	and	spinal	locations	of	human	adults	which	could	be	verified	in	tissue	biopsies	

[6].	Moreover,	BAT	in	human	adults	can	be	activated	by	exposure	to	cold.	A	correlation	

between	its	activity	and	low	body	mass	index	(BMI)	as	well	as	body	fat	in	human	adults	

was	described	[7,	8].	In	comparison,	rodents	exhibit	interscapular	and	perirenal	depots	

of	BAT	at	all	ages	[1,	5].		

	

Certain	 histological	 differences	 distinguish	 white	 from	 brown	 adipocytes.	 In	

adipocytes,	 fat	 accumulates	 in	 lipid	 droplets	 surrounded	 by	 a	 phospholipid	 layer	

containing	 perlipin-1	 which	 forms	 a	 vacuole	 separated	 from	 other	 cell	 organelles.	

While	 white	 adipocytes	 rather	 appear	 with	 one	 vacuole,	 brown	 adipocytes	 contain	

many	 smaller	 lipid	 droplets	 [2,	 9].	 Furthermore,	 brown	 adipocytes	 display	 a	 high	

density	of	mitochondria	that	 lay	the	basis	 for	their	 function:	The	 inner	mitochondrial	

membrane	contains	uncoupling	protein-1	 (UCP-1),	 a	protein	expressed	 specifically	 in	

brown	 adipocytes	 [1,	 2,	 9].	 UCP-1,	 also	 called	 thermogenin,	 is	 responsible	 for	

thermogenesis	 by	 BAT.	 While	 the	 respiratory	 chain	 in	 mitochondrial	 membrane	

generates	 a	 proton	 gradient	 necessary	 to	 produce	 energy	 in	 form	 of	 ATP,	 UCP-1	

establishes	 a	 back	 current	 for	 protons.	 Therefore,	 it	 uncouples	 the	 mechanism	 of	

respiratory	chain	and	produces	energy	in	form	of	heat.	Stimulation	of	the	sympathetic	

nervous	 system	 and	 catecholamine	 secretion	 in	 BAT	 induce	 increase	 of	 intracellular	

cyclic	adenosine	monophosphate	(cAMP)-levels	and	lipolysis	(detail	in	1.1.2).	Free	fatty	

acids	that	are	generated	by	 lipolysis	metabolize	 in	mitochondria	and	 its	products	are	

important	 for	 respiratory	 chain.	 Additionally,	 high	 cAMP	 concentration	 leads	 to	

transcription	 of	 UCP-1	 and	 therefore	 enhance	 production	 of	 heat	 [10].	 Hence,	 BAT	
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dissipates	 calories,	 therefore	 changes	 energy	 equation,	 and	 could	 possibly	 protect	

from	obesity,	as	shown	in	mice	[11].		

	

Recent	findings	revealed	the	existence	of	another	type	of	adipocytes,	so	called	beige	

or	bright	adipocytes.	They	occur	mainly	within	subcutaneous	WAT	but	show	multiple	

lipid	droplets,	 high	density	of	mitochondria,	 and	expression	of	UCP-1	with	 the	 same	

function	 in	 heat	 production	 as	 in	 brown	 adipocytes.	 Although	 the	 origin	 of	 beige	

adipocytes	is	controversially	discussed,	they	appear	to	develop	from	white	adipocytes	

by	 induction	with	 PPARγ-agonist,	 adrenergic	 stimulation,	 exercise,	 or	 cold	 exposure.	

This	 process	 is	 called	 “browning”	 or	 “beiging”	 of	 WAT.	 Similar	 to	 brown,	 beige	

adipocytes	possess	a	 large	number	of	mitochondria	and	express	UCP-1,	which	allows	

them	 to	 dissipate	 energy	 in	 the	 form	 of	 heat	 [1,	 5,	 12].	 However,	 recently	 a	 novel	

mechanism	 of	 heat	 dissipation	 utilized	 primarily	 by	 beige	 adipocytes	 has	 been	

proposed.	 Proteomic	 study	 revealed	 that	 beige	 adipocytes	 possess	 creatine	 enzyme	

driven	substrate	cycle	that	enhances	thermogenesis.	Creatine	drives	energy	dissipation	

by	mitochondria	of	beige	adipocytes	by	accepting	phosphate	group	from	ATP	and	 its	

subsequent	 release	 in	 the	 process	 mediated	 by	 phosphatase	 PHOSPHO1.	 The	 same	

study	 showed	 that	 this	 process	 contributes	 largely	 to	 the	 total	 energy	 balance	 in	

rodents	and	possibly	also	in	humans	[13].	

	

1.1.2 Physiology	of	white	adipocytes	

In	vertebrates,	adipocytes	have	an	evolutionary	 important	 function	and	 lay	 the	basis	

for	 survival	 of	 living	 organism:	 They	 store	 energy	 at	 times	 of	 nutritional	 abundance	

through	 lipogenesis	 in	 lipid	 vacuoles	 and	 provide	 the	 organism	with	 energy	 through	

lipolysis	when	in	nourishment	deprivation.	Therefore,	adipose	tissue	is	the	main	organ	

to	balance	energy	homeostasis	next	to	the	liver	and	the	intestines	[1,	14].		

	

Lipid	 droplets	 in	 adipocytes	 consist	 of	 triacylglycerides	 (TGs)	 stored	 without	 water.	

Therefore	TGs	have	a	higher	energy	density	 than	carbohydrates,	which	are	stored	as	

glycogen	with	water	 in	 liver	and	muscles	 [9].	Lipolysis,	 the	process	of	breaking	down	
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TGs,	 is	 induced	 during	 fasting	 or	 can	 be	 stress	 mediated,	 promoted	 by	 several	

hormones	among	which	catecholamines	are	of	greatest	importance.	Variables	such	as	

inflammation,	 oncological,	 genetic,	 metabolic	 and	 endocrine	 diseases,	 can	 alternate	

the	rate	of	lipolysis	[14].	Three	enzymes,	adipose	triglyceride	lipase	(ATGL),	hormone-

sensitive	 lipase	 (HSL),	and	monoacylgycerol	 lipase	 (MGL)	hydrolyze	TGs	 in	adipocytes	

to	release	diacylglycerol	(DAG)	first,	then	monoacylglycerol,	at	last	glycerol	and	in	each	

step	free	fatty	acids	(FFA)	[15].	However,	when	ATGL	and	HSL	are	deactivated	lipolysis	

is	reduced	to	2	percent	of	the	regular	lipolysis	rate	in	WAT	of	mice,	indicating	that	they	

display	main	enzymes	for	FFA	release	[16].	FFAs	are	released	to	circulation	to	provide	

needy	 organs	 with	 energy.	 They	 either	 undergo	 b-oxidation	 in	 mitochondria,	 which	

products	 are	 necessary	 for	 the	 citric	 acid	 cycle	 and	 the	 respiratory	 chain,	 or	 are	

metabolized	to	ketone	bodies	in	liver	cells.	Thus,	adipocytes	provide	energy	for	all	cells	

in	the	body	[10,	14].		

However,	in	time	of	food	abundance	adipocytes	adapt	by	storing	calories	in	form	of	TG	

in	 the	process	of	 lipogenesis.	 TGs	 are	 synthesized	 from	 fatty	 acids	 and	glycerol	with	

monoacylglycerolphosphate	 and	 1,2-diacylglycerol	 as	 intermediate	 steps	 [10].	 There	

are	two	ways	to	expand	capacity	for	fat	deposition:	First,	by	hypertrophy	of	cells	and	

second,	due	to	a	limit	in	adipocyte	size	by	hyperplasia	in	the	process	of	adipogenesis.	

Although	 this	mechanism	 is	 important	 for	 organisms	 survival,	 it	 is	 also	 the	 basis	 for	

obesity.	 Interestingly,	 loss	of	 body	weight	 leads	 to	 reduction	of	 cell	 size	but	not	 cell	

number	[1].		

	

Energy	homeostasis	in	an	organism	needs	to	be	tightly	controlled	and	adipocytes	play	

a	pivotal	role	in	its	regulation.	After	food	intake,	pancreatic	β-cells	secrete	insulin	that	

promotes	glucose	uptake	from	blood	into	muscle	cells	and	adipocytes.	This	means	that	

adipocytes	need	to	be	sensitive	to	insulin	in	order	to	balance	glucose	blood	levels	[9].	

Additionally,	 adipocytes	 act	 as	 an	 endocrine	 organ	 and	 secret	 adipokines	 which	

regulate	food	consumption,	energy	expenditure,	and	also	peripheral	insulin	sensitivity.	

One	 prominent	 adipokine	 is	 leptin.	 It	 has	 anti-hyperglycaemic	 effects,	 stimulates	

energy	expenditure	while	lowering	food	intake	via	the	hypothalamus.	It	also	promotes	
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inflammation	and	has	complex	effects	on	bone	remodeling	[1].	Loss	of	function	due	to	

mutations	in	leptin	and	the	leptin	receptor	result	in	obesity	[17].		

Adiponectin	 is	 another	 adipokine	 produced	 by	 adipocytes.	 Adiponectin	 has	 positive	

effects	 on	 metabolic	 health	 by	 improving	 β-cell	 function	 together	 with	 insulin	

sensitivity,	 serum	 lipid	 levels	 and	 inducing	metabolization	 of	 fatty	 acids	 in	 the	 liver	

[18].		

Further	 adipokine,	 resistin	 promotes	 insulin	 resistance	 in	 mice	 models	 and	 studies	

show	high	levels	of	resistin	in	obese	mice.	However,	mechanisms	of	its	action	and	its	

impact	on	metabolism	of	humans	has	not	been	fully	elucidated	so	far	[19].	

Furthermore,	the	sympathetic	innervation	of	fat	tissue	makes	lipolysis	possible.	Fasting	

induced	by	drop	of	blood	glucose	 level	as	well	as	 cold	exposure	 lead	 to	 secretion	of	

catecholamines	epinephrine	and	norepinephrine.	These	bind	to	β-adrenergic	receptors	

located	 at	 adipocyte	 cell	 membrane	 and	 activate	 a	 signaling	 cascade	 to	 increase	

lipolysis	[20].	On	the	other	hand,	parasympathetic	nerves	are	stimulated	after	feeding	

and	 enhance	 lipid	 accumulation	 [21].	 Apparently,	 visceral	 fat	 is	 more	 densely	

innervated	than	subcutaneous	fat	[20].	

	

1.1.3 Pathophysiology	of	obesity	

Adipocytes	play	a	pivotal	role	in	development	of	metabolic	diseases	as	abnormal	and	

excessive	 TG	 accumulation	 in	 these	 cells	 result	 in	 obesity	 [22].	 Globally	 speaking,	

obesity	 is	 caused	 by	 an	 imbalanced	 energy	 equation	 resulting	 from	 an	 increased	

energy	 intake	 of	 high	 caloric	 foods	 as	well	 as	 insufficient	 caloric	 expenditure	 of	 the	

body	 via	 physical	 activity,	 basal	 metabolism,	 and	 adaptive	 thermogenesis.	 Genetic,	

environmental,	 and	 psychological	 factors	 influence	 this	 equation	 [22,	 23].	 In	 clinical	

means,	 obesity	 is	 classified	 using	 the	 Body	 Mass	 Index	 (BMI,	 [kg/m2]),	 which	 is	

calculated	 by	 the	 person’s	 weight	 (in	 kilogramm)	 and	 divided	 by	 the	 square	 of	 the	

person’s	height	(in	meters).	According	to	WHO,	BMI	of	30	and	more	counts	as	obesity.	

In	2016,	the	WHO	estimated	over	650	million	adults	(18	years	and	above),	13	percent	

of	the	population	worldwide,	to	be	obese.	More	importantly,	41	million	children	under	

5	years	old	were	 found	to	be	obese	or	overweight	 (BMI	equal	or	greater	 than	25)	 in	
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2016,	 which	 is	 associated	with	 their	 future	 obesity,	 disability,	 and	 premature	 death	

next	 to	 acute	 health	 impediments	 and	 increased	 risk	 for	 insulin	 resistance,	 amongst	

others	[23].		

	

Central	obesity	due	to	an	increased	amount	of	white	adipose	tissue	in	the	abdomen	is	

the	 main	 component	 of	 the	 metabolic	 syndrome	 [24].	 The	 International	 Diabetes	

Federation	 (IDF)	 defines	 the	 metabolic	 syndrome	 as	 abdominal	 obesity,	 specifically	

meaning	waist	circumference	of	94	cm	or	more	for	European	men	and	80	cm	or	more	

for	European	women	excluding	other	ethnicities	with	different	values,	combined	with	

two	of	the	following	aspects:	raised	TG	levels,	reduced	HDL	(high-density-lipoprotein-

cholesterol)	levels	in	blood,	raised	blood	pressure,	or	treatment	of	any	of	those	three	

factors,	 raised	 fasting	plasma	glucose	 levels	 or	 previously	diagnosed	 type	2	diabetes	

mellitus	 (T2DM)	 [24].	 Emphasis	 is	 put	 on	 the	 factor	 abdominal	 obesity,	 which	 is	

associated	especially	with	development	of	T2DM	but	also	with	 the	other	 risk	 factors	

listed	 in	 the	definition	of	metabolic	 syndrome.	Low	HDL	cholesterol	and	elevated	TG	

blood	levels	can	be	summoned	as	atherogenic	dyslipidaemia,	which	is	found	in	humans	

with	 metabolic	 syndrome	 and	 T2DM.	 The	 link	 between	 each	 listed	 risk	 factor	 is	

complex	but	 they	are	most	 important	 for	development	of	cadiocascular	disease.	 It	 is	

generally	 accepted	 that	 the	 metabolic	 syndrome	 is	 a	 combination	 of	 the	 most	

dangerous	risk	 factors	 to	cause	heart	attack	or	stroke	 [24].	 In	 fact,	 the	World	Health	

Organization	(WHO)	listed	ischaemic	heart	disease	with	8.67	million	deaths	as	the	first	

leading	 cause	 for	 death	 worldwide	 in	 the	 year	 2015,	 followed	 by	 stroke	 with	 6.24	

million	deaths	 as	 the	 second	 leading	 cause,	 and	diabetes	mellitus	 (DM)	on	 the	 sixth	

place	[25].	Most	importantly,	the	number	of	deaths	caused	by	DM	increased	from	less	

than	1	million	 in	 2010	 to	 1.59	million	 in	 2015	 [25].	Hence,	metabolic	 syndrome	and	

diseases	associated	with	it	form	a	big	threat	for	the	well-being	of	our	society.	

	

T2DM	 is	 a	 metabolic	 disease	 characterized	 by	 chronic	 hyperglycaemia	 caused	 by	 a	

composition	of	peripheral	 insulin	resistance,	 impaired	insulin	secretion	and	apoptosis	

of	pancreatic	β-cells,	elevated	glucagon	secretion	by	pancreatic	a-cells,	and	 impaired	
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incretin	secretion	as	well	as	incretin	effectiveness	[26].	According	to	WHO,	T2DM	is	a	

result	of	overweight	and	physical	inactivity	[27].	The	great	majority	of	T2DM	develops	

on	the	basis	of	metabolic	syndrome.	Approximately	80	percent	of	people	with	T2DM	

are	overweight.	This	makes	maintenance	of	normal	body	weight	and	reduction	of	body	

weight	in	obese	one	of	the	best	preventive	courses	of	action	[26].		

As	in	obesity	white	adipocyte	hypertrophy	and	hyperplasia	progresses,	adipose	tissue	

can	eventually	 outgrow	 its	 blood	 supply	which	 causes	hypoxia	 in	 the	 tissue	 [1].	 This	

leads	to	macrophage	invasion	and	cytokine	secretion,	including	TNF-α	(tumor	necrosis	

factor	α),	resistin,	MCP-1	(macrophage	chemoattractant	protein-1)	and	others,	and	in	

essence	 to	 inflammation	 in	WAT.	 In	 addition,	 fibrosis	 may	 develop,	 which	 supports	

inflammatory	progress	[9].	Pro-inflammatory	cytokines	were	found	to	negatively	affect	

insulin	sensitivity	not	only	in	adipocytes	but	also	in	liver	and	muscle	[1].	However,	an	

other	 study	 proposed	 that	 increase	 of	 fibrosis	 in	 adipose	 tissue	 restricts	 adipocyte	

hypertrophy,	 which	 is	 beneficial	 for	 metabolic	 health	 and	 is	 therefore	 protective	

against	 T2DM	 [28].	 In	 addition	 to	 the	 inflammatory	 process,	 adipocytes	 endocrine	

function	 alters	 in	 obese	 individuals	 and	 contributes	 to	 decreased	 insulin	 sensitivity.	

Secretion	of	adiponectin	for	instance	decreases	with	gain	of	visceral	fat	and	therefore	

its	positive	effects	on	insulin	sensitivity	diminish	in	obese	individuals.	Resistin	levels	on	

the	other	hand	are	 increased	 in	obese	mice	and	 cause	elevated	 insulin	 resistance	 in	

them.	 Although	 leptin	 is	 helpful	 in	 reducing	 body	 weight	 (1.1.2),	 it	 also	 enhances	

cytokine	 production	 and	 therefore	 stimulates	 inflammation.	 Leptin	 blood	 levels	

correlate	with	mass	 of	 fat	 [1,	 9,	 22].	 All	 in	 all,	 these	mechanisms	 show	 that	 chronic	

inflammation	is	associated	with	obesity	and	inflammation	results	in	peripheral	insulin	

resistance	 and	 eventually	 in	 T2DM	 [29].	 Insulin	 resistance	 in	 adipose	 tissue	 leads	 to	

release	of	FFA	into	blood	circulation	[9].	When	reaching	liver,	FFA	induce	elevation	of	

LDL	 (low	 density	 lipoprotein	 cholesterol),	 apolipoprotein	 B	 and	 TG	 whereas	 HDL	 is	

reduced.	 This	 atherogenic	 dyslipidaemia	 significantly	 increases	 not	 only	 the	 risk	 for	

heart	disease	but	 in	 addition,	 chronic	 increased	FFA	blood	 levels	 induce	decrease	of	

insulin	secretion	and	therefore	causes	insulin	resistance	in	liver	and	other	tissues,	too	

–	a	vicious	cycle	[9,	24].		
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Prevalence	of	DM	in	2014	was	8.5	percent	among	adults	worldwide	and	the	majority	

suffered	 from	 T2DM.	 Consequences	 of	 DM	 include	 high	 risk	 of	 death	 from	

cardiovascular	 disease,	 in	 detail	 heart	 attack	 and	 stroke,	 risk	 of	 neuropathy	 and	

reduced	blood	 flow,	which	 can	 result	 in	 lower	 limb	 loss,	 and	 risk	of	 retinopathy	and	

kidney	failure	[27].	

	

Apart	 from	 metabolic	 disease,	 obesity	 is	 associated	 with	 development	 of	 certain	

cancer	 types	 such	 of	 endometrium,	 breast,	 colon,	 renal,	 esophageal,	 and	 pancreatic	

cancer	[1,	23].	

Thus,	 it	 is	 of	 great	 importance	 for	 the	 future	 of	 human	 global	 health	 to	 promote	

research	 and	 investigate	 possibilities	 to	 prevent	 and	 fight	 obesity,	 T2DM,	 and	

metabolic	syndrome,	all	of	which	are	linked	to	adipocyte	function.		

	

1.2 Protein	kinase	D	1		

PKD1	 belongs	 to	 a	 group	 of	 isoforms	 in	 the	 protein	 kinase	 D	 (PKD)	 family	 of	

serine/threonine	kinases	 [30].	The	PKD	family	 is	classified	 in	 the	calcium/calmodulin-

dependent	 protein	 kinases	 (CAMKs)	 superfamily	 due	 to	 similarities	 of	 the	 kinase	

domain.	There	are	three	different	 isoforms	of	PKDs	 in	mammals	with	different	tissue	

and	 cell	 expression:	 PKD1	 (also	 referred	 to	 as	 PKCμ),	 PKD2,	 and	 PKD3	 (also:	 PKCν)	

sharing	a	similar	modular	structure	but	encoded	in	three	different	genes.	PKDs	exhibit	

an	 N-terminal	 regulatory	 domain	 containing	 two	 cystein-rich	 zink-finger	 motifs	

(cysteine-rich	 domain,	 CRD)	 and	 an	 autoinhibitory	 pleckstrin	 homology	 (PH)-domain.	

More	 specifically,	 the	 CRD	 binds	 to	 diacylglycerol	 (DAG)	 and	 phorbol	 esters	 to	

translocate	the	kinase	to	plasma	membrane	and	nucleus	and	has	an	 inhibitory	effect	

on	the	kinase	catalytic	activity.	Mutation	of	PH-domain	or	deletion	of	zink-fingers	from	

the	CRD	 lead	to	fully	active	PKD	function.	Thus,	 the	N-terminal	domain	 is	 involved	 in	

intramolecular	inhibition	of	PKDs	catalytic	activity	[30,	31].	
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Figure	1:	Signalling	pathway	and	modular	structure	of	PKD1	in	mice.	1,2-DAG	derived	either	from	cell	
surface	receptor	stimulation	(GPCR,	TKR)	via	Phospholipase	C	activation	or	from	de	novo	synthesis	of	TG	
can	bind	PKD1	and	PKC.	To	activate	PKD1,	PKC	phosphorylates	PKD1	at	Ser744	and	Ser749,	and	PKD1	
auto-phosphorylates	at	Ser916.	Activated	PKD1	can	then	execute	its	biological	functions.	1,2-DAG,	1,2-
Diacylglycerol;	PKC,	Protein	Kinase	C;	PKD1,	Protein	Kinase	D1;	C1a	and	C1b,	 first	and	second	cystein-
rich	Zn-finger	domain	 in	CRD	that	bind	DAG;	PH,	pleckstrin	homology	domain;	Kinase,	Kinase	domain;	
Ser744,	Ser748	and	Ser916,	serine	phosphorylation	sites.	Figure	was	kindly	provided	by	G.	Sumara	and	
M.	Löffler.	

	

Furthermore,	 there	 is	a	C-terminal	kinase	domain,	which	can	be	phosphorylated	and	

therefore	activates	the	kinase.	PKD1s	kinase	domain	can	be	phosphorylated	by	DAG-

activated	Protein	Kinase	C	isoforms	(PKCs	d,	e,	h,	q)	at	its	serines	in	the	activation	loop,	

Ser-744	and	Ser-748	in	murine	PKD1,	which	is	necessary	for	the	kinases	activity	[31].	It	

has	 been	 shown	 that	 on	 the	 one	 hand	 mutation	 at	 Ser-744	 and	 Ser-748	 leads	 to	

inability	of	PKD1	activation,	on	 the	other	hand	 imitation	of	phosphorylation	 through	

mutation	at	 these	sites	creates	a	constitutively	active	kinase	 [32].	Additionally,	PKD1	

has	the	ability	to	auto-phosphorylate	Ser-916	(pSer-916,	in	murine	PKD1)	at	the	far	C-

terminal	end	 for	conformational	changes	 in	PKD1.	For	 this	 step,	phosphorylated	Ser-
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744	 (pSer-744)	 is	 required,	 and	 furthermore,	 pSer-916	 is	 necessary	 for	 auto-

phosphorylation	of	Ser-748.	Therefore,	PKDs	activity	can	be	traced	by	using	antibodies	

against	 pSer-744/748	 or	 against	 pSer-916	 [30].	 Of	 note,	 that	 these	 phosphorylation	

sites	apply	 for	mice	and	differ	 from	human	PKD1	 (Ser-738/Ser-742	 in	activation	 loop	

and	Ser-910	at	far	N-terminal	end)	[33].	

There	is	a	pool	of	PKD1	located	mainly	 in	the	cytosol	of	resting	cells.	Upon	G-protein	

coupled	 receptor	 (GPCR)	 or	 tyrosine-kinase	 receptor	 (TKR)	 stimulation	 of	 cells,	

Phosolipase	 C	 (PLC)	 is	 activated	 leading	 to	 the	 generation	 of	 DAG	 at	 the	 plasma	

membrane	 to	 bind	 and	 activate	 PKC,	 (Figure	1)	 [30].	 Study	 showed	 that	 the	 1,2-DAG	

stereoisomer	 fulfills	 activation	 of	 PKC,	 which	 is	 provided	 by	 PLC-pathway	 at	 plasma	

membrane	[34].		

As	 mentioned	 before,	 PKDs	 use	 the	 CRD	 for	 translocation	 in	 cells.	 Therefore,	 PLC-

produced	 DAG	 also	 binds	 to	 PKDs	 second	 zink-finger	 domain	 in	 CRD	 (C1b).	 It	 then	

translocates	via	the	second	zink-finger	domain	to	the	plasma	membrane.	Attached	to	

the	plasma	membrane,	activated	PKC	phosphorylates	PKD	in	the	activation	loop	at	Ser-

744	 and	 Ser-748.	 This	 step	 is	 needed	 to	 activate	 PKD	which	 then	 rapidly	 dissociates	

from	the	plasma	membrane	to	further	cross	the	nucleic	membrane	again	by	using	the	

second	zink-finger	and	accumulate	in	the	cell	nucleus.	For	export	from	the	nucleus	the	

PH-domain	is	required.[30,	31]		

Yet,	PKD	 isoforms	can	be	activated	at	other	 subcellular	 location.	The	 first	 zink-finger	

domain	 (C1a)	 of	 CRD	 determines	 PKDs	 translocation	 into	 the	 trans-Golgi	 network	

(TGN)	 [30].	 Importantly,	 this	 step	 is	 dependent	 on	 local	 synthesis	 and	 levels	 of	DAG	

binding	to	PKD1	[35].	Of	note,	PKD	isoforms	regulate	TGN	dynamics	and	are	required	

for	vesicle	fission	from	the	TGN	[36].	

Hypothetically,	1,2-DAG	produced	as	an	intermediate	product	during	local	triglyceride	

synthesis	 in	 the	 endoplasmic	 reticulum	 (ER)	 potentially	 also	 activates	 PKC	 and	 PKD,	

however,	this	should	be	further	analyzed	[15].		

	

Hence,	PKD1	is	activated	by	DAG-PKC-pathway	and	DAG	regulates	localization	of	PKD1.	

PKD1	 is	 located	within	 the	 cell	 cytosol,	 TGN,	 nucleus,	 and	mitochondria	 and	 can	 be	
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activated	 via	 the	 PKC-pathway	 in	 vivo	 through	 neuropeptides,	 purinergic	 receptor	

activation,	 growth	 factors,	 neurotensin	 and	 many	 more,	 next	 to	 DAG	 and	 phorbol	

esters	 [30,	 31,	 36,	 37].	 Specific	 substrates	 and	 changes	 in	 sub-cellular	 localization	

determine	its	function	and	the	resulting	biological	effect	[38].	

	

However,	 PKD	 also	 displays	 PKC-independent	 pathways	 for	 activation.	 A	 Src-Abl-

pathway	mediates	phosphorylation	of	PKD1	at	 the	PH-domain	 through	 the	action	of	

tyrosine	[37].	Moreover,	PKD1	is	a	substrate	of	caspase-3	and	is	regulated	in	apoptosis,	

during	which	 cleavage	 of	 PKD1	 at	 two	 sites	 showed	 increase	 of	 the	 kinases	 activity	

[39].	M3-muscarin	receptors	were	also	shown	to	activate	PKD1	in	pancreatic	β-cells	via	

direct	phosphorylation	in	a	β-arrestin-dependent	manner	[40].		

Recently,	 Chang	 et	 al.	 demonstrated	 that	 stimulation	 with	 GPCR	 agonists	 induces	

phosphorylation	of	PKD1	at	Ser-203	in	the	N-terminal	end.	The	study	identified	group	I	

p21-activated	 kinase	 (PAK)	 as	 novel	 upstream	 kinase	 to	 phosphorylate	 Ser-203	 and	

activate	PKD1	in	an	PKC-independent	manner.	They	showed	that	this	mechanism	leads	

to	 translocation	of	 PKD1	 into	 the	nucleus	where	 it	 regulates	HDAC5	 localization	and	

phosphorylation	[41].	

Thus,	 not	 all	 possibilities	 of	 PKD1	 regulation	 and	 activation	 can	 be	 explained	 by	 the	

PKC-pathway	and	are	yet	to	be	found.	

Moreover,	 previous	 studies	 performed	 by	 M.	 Loeffler	 et	 al.	 implicated	 PKD1	 in	

regulation	of	a	number	of	cellular	and	physiological	processes	influencing	body	weight,	

composition	and	nutrient	metabolism	

	

1.2.1 Function	of	PKD1	

PKD1	exhibits	a	variety	of	biological	 functions	dependent	on	the	cell	 type,	substrate,	

and	 intracellular	 localization	 (plasma	 membrane,	 trans-Golgi	 Network,	 nucleus,	

mitochondria).	Many	different	processes	on	cellular	 level	were	shown	to	 incorporate	

PKD	 in	 regulation	 of	 proliferation,	 differentiation,	 cell	 motility,	 apoptosis,	 gene	

expression,	 intracellular	 signal	 pathways,	 and	 trans-Golgi	 Network	 dynamics	 [36-38,	

42].		
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Proliferation	

PKD1	supports	proliferation	and	differentiation	of	cells,	either	on	normal	or	abnormal	

level,	 meaning	 cancer	 progression.	 For	 example,	 fibroblasts	 stimulated	 with	 Gq-

receptor	 agonist	 induce	 mitogenesis	 of	 fibroblasts	 via	 PKD1	 activation	 [38].	 More	

detailed,	 Gq-receptor-mediated	 activation	 of	 PKD	 enhances	 ERK	 signaling	 in	

MEK/ERK/RSK	 (MEK,	 ERK	 kinase;	 ERK,	 extracellular-regulated	 protein	 kinase;	 RSK,	

ribosomal	s6	kinase)	pathway	and	therefore	potentiates	DNA	synthesis	 in	 these	cells	

[43].	 In	 epidermal	 keratinocytes,	 PKD1	 is	 more	 expressed	 during	 proliferation	 but	

lower	during	differentiation	of	keratinocytes	[44].	In	these	cells,	the	proliferative	effect	

of	 PKD	 is	 also	 attributed	 to	 activation	 of	 ERK-pathway	 and	 enhanced	DNA	 synthesis	

[45].	Regulation	 in	differentiation	processes	by	PKD1	were	 shown	 in	osteoblasts	and	

formation	 of	 bone	 [38].	Moreover,	 PKD1	 plays	 an	 important	 role	 in	 angiogenesis,	 a	

process	 supporting	 tumor	 growth,	 obesity	 and	 cardiovascular	 development.	 It	 was	

shown	that	vascular	epithelial	growth	factor	(VEGF)-stimulated	endothelial	cells	need	

PKD1	signaling	for	further	gene	and	DNA	synthesis	and	proliferation	[46].		

	

Cell	migration	

Furthermore,	 PKD1	 is	 involved	 in	 motion	 and	migration	 of	 cells	 by	 interacting	 with	

actin	 cytoskeleton	 in	 various	 aspects.	 Active	 slingshot	 phosphatase	 (SSH)	 family	

member	 SSH1L	 binds	 to	 filamentous	 actin	 (F-actin),	 dephosphorylates	 and	 therefore	

activates	cofilin	 (F-actin	depoymerization	and	severing	 factor	ADF/cofilin)	 inducing	F-

actin	polymerization	and	cell	migration.	Active	PKD1	co-localizes	with	SSH1L	to	F-actin,	

phosphorylates	and	 inactives	SSH1L	and	therefore	 inhibits	F-actin	 reorganization	and	

cell	motility	[47].	Furthermore,	PKD1	interrupts	F-actin	remodelling	by	phosphorylating	

RIN1	(Rab	interactor-1)	and	cortactin	[48,	49].	

Moreover,	 PKD1s	 phosphorylation	 of	 E-Cadherin	 enhances	 cell-cell	 adhesion	 and	

inhibits	cell	motion.	Interestingly,	expression	of	both	proteins	is	diminished	in	certain	

cancer	types	leading	to	advanced	invasiveness	of	cancer	cells	[36,	50].	
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Oxidative	Stress	and	Apoptosis	

Oxidative	stress	was	also	shown	to	activate	PKD1	through	the	Src-Abl	tyrosine	kinase	

pathway	that	phosphorylates	the	PH-domain	in	addition	to	phosphorylation	at	the	PKD	

activation	 loop	 through	PKC.	 Fully	 activated	PKD1	 in	 turn	activates	nuclear	 factor	 κB	

(NF-κB),	a	transcriptional	factor	that	protects	from	oxidative-stress-induced	cell	death,	

through	 the	 action	 of	 IκB-kinase	 β	 (IKKβ)	 of	 the	 IKK-complex	 [37,	 51].	 In	

neurodegenerative	 diseases,	 PKD1	 was	 identified	 as	 a	 key	 kinase	 to	 support	 cell	

survival	and	protect	neurons	from	oxidative	stress,	which	was	also	attributed	to	PKC-

dependent	 phosphorylation	 in	 PKD1s	 activation	 loop	 [52].	 Moreover,	 in	

cardiomyocytes	activation	of	PKD1	was	shown	to	be	mediated	by	RhoA,	a	guanosine	

triphosphatase	activated	by	GPCR	 leading	 to	PLCe	 activation	and	generation	of	DAG.	

Active	 PKD1	 phosphorylates	 and	 therefore	 inhibits	 SSH1L	 in	 cardiomyocytes,	 which	

diminishes	 oxidative-stress	 induced	 translocation	 of	 cofilin	 2	 to	 mitochondria,	

protecting	 mitochondrial	 membrane	 and	 promoting	 cell	 survival	 [53].	 Thus,	 PKD1	

supports	survival	of	cells	under	oxidative	stress	and	has	anti-apoptotic	attributes	[36,	

37].	

	

PKD1	in	regulation	of	transcription	

PKD1	 was	 also	 shown	 to	 regulate	 transcription.	 Specifically,	 PKD1	 phosphorylates	

specific	 sites	 of	 class	 II	 histone	 deacetylases	 (HDAC),	 which	 suppress	 transcription.	

PKD1-dependent	phosphorylation	of	members	of	class	 II	HDACs	 (HDAC4,	HDAC5	and	

HDAC7)	 promotes	 its	 dissociation	 from	 the	 chromatin	 and	 nuclear	 export	 and	

therefore	promotes	transcription	of	the	target	genes	[37].	This	mechanism	is	especially	

important	in	regulation	of	heart	remodeling	after	hypertrophic	stimuli.	Mice	deficient	

for	 PKD1	 specifically	 in	 cardiomyocytes,	 are	 partially	 resistant	 to	 pathological	 heart	

remodeling	due	to	the	enhanced	nuclear	localization	of	class	II	HDACs	which	suppress	

transcription	of	key	genes	mediating	pathological	heart	remodeling	[54].	Furthermore,	

PKD1	was	found	to	enhance	transcriptional	activity	through	phorphorylation	of	cAMP-

response	 element-binding	 protein	 (CREB)	 [55].	 In	 the	 context	 of	 heart	 remodeling	

CREB	was	 identified	 as	 a	 substrate	 of	 PKD.	 This	 PKD-CREB	 phosphorylation	 pathway	
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leads	to	activation	of	CRE-responsive	promotor	in	nuclei	of	cardiomyocytes,	suggesting	

participation	of	PKD	in	cardiac	remodeling	[56].		

	

Immunological	response	

Also	 in	 B	 and	 T	 lymphocytes	 PKD	 shows	 regulatory	 involvement	 in	 immunological	

responses.	 PKD	 is	 activated	 and	 changes	 localization	 from	 cytosol	 to	 cell	membrane	

when	antigen	receptors	are	stimulated	in	pre-T	cells.	Depending	on	localization	in	pre-

T	cells,	PKD	induces	their	proliferation	and	differentiation	[57].	Furthermore,	PKD1	was	

shown	to	be	part	of	signaling	cascade	that	recruits	neutrophils	into	inflammatory	sites.	

In	mice,	p38	mitogen-activated	protein	kinase	(MAPK)	p38δ	enhances	chemotaxis	and	

recruitment	of	neutrophils	and	(as	in	pancreatic	β-cells	[42],	see	below)	has	inhibitory	

effects	on	PKD1	activity	in	neutrophils.	Here,	PKD1	phosphorylates	p85α,	a	regulatory	

subunit	of	phosphoinositide	3-kinase	(PI3	kinase),	increasing	its	binding	to	and	activity	

of	PTEN	(phosphatase	tensin	homologue)	that	in	turn	diminishes	neutrophil	migration.	

Hence,	 inhibition	 of	 PKD1	 by	 MAPK	 p38δ	 enhances	 neutrophil	 recruitment	 and	

migration	[58].	Also,	PKD	was	found	to	be	part	of	 immune	response	signaling	of	toll-

like-receptors	of	macrophages,	bone	marrow	derived	mast	 cells,	 and	epidermal	 cells	

[38].		

 

PKD1	is	a	master	regulator	of	trans-Golgi	Network	(TGN)	dynamics	

At	 the	TGN	PKD1	activity	 is	 required	 for	 fission	of	 vesicles	acting	as	 carries	between	

TGN	and	plasma	membrane	 [59].	Additionally,	 PKD1	 is	 involved	 in	 cell	 secretion,	 for	

instance	 of	 aldosterone	 and	 cortisol	 from	 adrenocortical	 cells,	 or	 of	 insulin	 from	

pancreatic	β-cells	[38].	Moreover,	in	pancreatic	β-cells	PKD1	activity	is	subjected	to	the	

control	 of	 other	 stress	 activated	 kinase,	 namely	 MAPK	 p38δ,	 which	 inhibits	 its	

activation	and	suppresses	insulin	vesicle	fission	from	TGN.	Consistently,	PKD1	is	pivotal	

in	 carbachol	 (mimicking	parasympathetic	 stimulation)	 and	 glucose	 stimulated	 insulin	

secretion	 from	pancreatic	 β-cells.	Deletion	of	 PKD1	 in	 these	 cells	 results	 in	 inhibited	

insulin	secretion	upon	glucose	stimulation.	Accordant	with	that,	PKD1	 is	activated	by	

deletion	 of	 p38δ	 which	 leads	 to	 improved	 glucose	 tolerance	 by	 enhanced	 insulin	

secretion	 [42].	 Furthermore,	PKD	 is	 involved	 in	 insulin	 granule	degradation	 in	β-cells	
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and	PKDs	activity	decreases	at	the	TGN	upon	starvation	of	these	cells	suggesting	that	

nutrients	 regulate	PKDs	activity	 [60].	 It	was	also	demonstrated	that	PKD1	 is	 required	

for	 glucose-stimulated	 insulin	 secretion	 via	 G-protein	 receptor	 (GPR)	 40	 upon	

stimulation	with	 fatty	acids	 in	murine	 islets	 [61].	All	of	 these	 findings	make	PKD1	an	

interesting	topic	in	research	on	DM	and	metabolic	diseases.	

	

Cancer	

PKD1s	 multiple	 functions	 in	 fundamental	 cellular	 processes	 are	 associated	 with	

development	of	cancer.	However,	classification	in	positive	or	negative	effects	of	PKD1	

expression	on	cancer	disease	depends	on	tissue	and	cancer	cell	type	[38,	62].		

In	breast	as	well	 as	gastric	 cancer,	PKD1	expression	was	 found	 to	be	downregulated	

due	to	epigenetic	hypermethylation	of	PKD1s	promoter	region	[63,	64].	Furthermore,	

upregulation	 of	 PKD1	 inhibits	 invasiveness	 and	metastasis	 of	 breast	 cancer	 through	

decrease	 of	 cell	 migration	 via	 phosphorylation	 and	 inactivation	 of	 slingshot	

phosphatase	1L	(SSH1L),	phosphorylation	of	cortactin,	and	phosphorylation	of	Ras	and	

RIN1	 [62].	 Also,	 PKD1	 activity	 inhibits	 expression	 of	 pro-invasive	 matrix	

metalloproteinases	 (MMP)	 in	 breast	 as	 well	 as	 prostate	 cancer	 cells	 [62,	 64].	

Additionally,	 PKD1	 activity	 in	 breast	 and	 prostate	 cancer	 regulates	 epithelial-

mesenchymal-transition	 (EMT)	 through	 phosphorylation	 of	 transcription	 factor	 Snail	

(SNAI1)	 at	 Ser-11,	 which	 leads	 to	 E-cadherine	 expression,	 and	 therefore	 preventing	

EMT	process	[64,	65].	However,	other	studies	indicate	that	upregulation	of	PKD1	has	a	

pro-oncogenic	effect	on	prostate	cancer	development	[62].	 In	pancreatic	cancer	cells	

overexpression	 of	 PKD1	 was	 observed	 to	 promote	 cancer	 progress	 through	

neurotensin-induced	 synthesis	 of	 DNA	 via	 MAPK/ERK	 kinase	 1	 and	 ERK2	 [66].	

Importantly,	 inhibition	 of	 PKD1	 and	 PKD2	 was	 shown	 to	 reduce	 pancreatic	 tumor	

growth	and	to	be	a	potential	target	for	pancreatic	tumor	therapy	[67].		

1.2.2 Role	of	PKD1	in	mouse	adipose	tissue		

As	 mentioned	 above,	 adipocytes	 play	 a	 pivotal	 role	 in	 development	 of	 metabolic	

diseases	(1.1.3).	To	investigate	factors	influencing	development	of	obesity	other	than	

disadvantageous	 life-style,	multiple	approaches	were	used	 to	understand	 the	 impact	
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of	 heritability,	 specifically	 genetic	 and	 epigenetic	 influence	 on	 obesity	 and	 T2DM.	 A	

genome-wide	 association	 study	 implicated	 that	 common	genetic	 variation	 can	 cause	

approximately	 21	 percent	 of	 BMI	 variation	 in	 humans	 [68].	 Using	 genome-wide	

significance	 single	 nucleotide	 polymorphisms	 (SNP),	 this	 study	 investigated	 the	 link	

between	gene-loci	 and	BMI	and	 identified	97	 loci	 that	account	 for	2.7	%	variance	 in	

BMI	phenotype.	Of	 these,	protein	kinase	D1	(PKD1)	was	 found	as	a	novel	gene-locus	

associated	with	BMI	[68].		

	

Previous	studies	perfomed	by	Mona	Löffler	in	the	G.	Sumara	research	group	revealed	

that	PKD1	plays	a	pivotal	 role	 in	 regulation	of	adipocyte	 function.	 It	 is	of	notice	 that	

PKD1	 is	 predominately	 expressed	 in	 subcutaneous	 (subWAT),	 epigonadal	 (epiWAT),	

and	 isolated	 white	 adipose	 tissue	 among	 other	 cell	 types	 of	 mice	 with	 highest	

expression	in	epiWAT	(Figure	2).		

	

	
Figure	2:	Mona	Löffler	et	al.,	unpublished.	PKD1	is	predominantly	expressed	in	white	adipose	tissue	of	
mice.	qPCR	was	conducted	to	determine	relative	expression	of	PKD1	in	different	tissues	of	regular	black-
6	mice	(n=4).	Brown	adipose	tissue	(BAT),	subcutaneous	(subWAT)	and	epigonadal	white	adipose	tissue	
(epiWAT),	 isolated	 adipocytes,	 liver,	 pancreas,	 kidney,	 lung,	 heart,	 and	 skeletal	 muscle	 (SKM)	 were	
investigated.	
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This	specific	pattern	of	expression	of	PKD1	prompted	the	G.	Sumara	research	group	to	

generate	mice	 deficient	 for	 PKD1	 specifically	 in	 adipocytes	 (PKD1adipo.	 Δ/Δ)	 by	 using	

PKD1flox/flox	mice	[54]	and	adiponectin	promotor-driven	Cre	mice	[69].		

	

	
Figure	3:	Mona	 Löffler	 et	 al.,	 unpublished.	PKD1	deficiency	 in	 adipose	 tissue	protects	 from	high	 fat	
diet-induced	 obesity.	 Body	 weight	 gain	 (A)	 over	 24	 weeks	 of	 HFD	 or	 ND	 in	 mice	 expressing	
(PKD1flox/flox,	wt)	or	deficient	 (PKD1adipo.	Δ/Δ,	ko)	 for	PKD1	 in	adipose	 tissue.	Food	 intake	 (B),	mouse	
activity	 (C),	O2	consumption	(D),	CO2	dissipation	(E)	and	peripheral	FFA-blood	 levels	 (F).	Data	 for	A	 -	E	
was	collected	with	PhenoMaster,	data	for	F	was	determined	with	NEFA-HR(2)	reagent	(by	Wako).	For	A	
and	F	n=10	wt	mice	and	n=8	ko	mice	were	used	for	HFD,	and	n=5	wt	mice	and	n=10	ko	mice	were	used	for	
ND;	For	B-E	n=7	animals	were	analyzed.	Data	 is	presented	as	mean	±	SEM.	For	all	data,	*p	<	0.05	and	
**p	<	0.05,	using	two	way	ANOVA	with	Tukey’s	multiple	comparisons	post	test	and	unpaired,	two-tailed	
Student’s	T-Test.	

	
PKD1-deficient	mice	gained	significantly	less	weight	when	fed	with	high	fat	diet	(HFD)	

than	wildtype	mice,	however,	their	weight	was	not	altered	when	fed	normal	chow	diet	

(ND,	 Figure	 3,	 A).	 The	 data	 G.	 Sumaras	 research	 group	 generated	 indicate	 that	

PKD1adipo.	Δ/Δ	mice	are	partially	resistant	to	HFD	induced	obesity.		

Body	weight	is	a	result	of	the	energy	balance	of	the	organism.	In	other	words	relative	

increase	of	the	amount	of	the	energy	 ingested	over	the	amount	of	energy	dissipated	

results	in	increase	in	body	weight,	conversely	negative	energy	balance	results	in	body	

weight	 loss	 [9].	 Hence,	 in	 living	 organism,	 energy	 intake	 can	 be	measured	with	 the	

individuals’	 food	 intake	 but	must	 be	 evaluated	 in	 relation	 to	 the	 energy	 dissipation	
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[22].	However,	energy	can	be	dissipated	by	the	organism	in	different	forms.	Primarily,	

organisms	utilize	the	energy	ingested	to	sustain	basal	metabolism	of	all	the	cells	in	the	

body.	 Energy	 can	 also	 be	 utilized	 by	 the	 organism	 for	 physical	 activity	 as	 well	 as	

sustaining	 optimal	 core	 body	 temperature	 in	 the	process	 of	 adaptive	 thermogenesis	

[22].	To	test	all	of	these	possibilities,	G.	Sumara	research	group	placed	PKD1adipo.	Δ/Δ	

mice	 in	 the	 Phenomaster	metabolic	 cages	which	 allows	 simultaneous	 assessment	 of	

the	food	intake,	voluntary	movements	(activity),	O2	consumption	and	CO2	dissipation	

in	 living	 mice.	 PKD1adipo.	 Δ/Δ	 mice	 presented	 normal	 food	 intake	 (Figure	 3,	 B)	 and	

voluntary	movements	 (Figure	 3,	 C)	 compared	 to	wild-type	 littermates	when	 fed	with	

HFD.	However,	 deficiency	of	 PKD1	 specifically	 in	 adipocytes	 resulted	 in	 increased	O2	

consumption	and	higher	CO2	dissipation	(Figure	3,	D	and	E)	 indicating	elevated	energy	

expenditure	in	these	animals.		

Adipocytes	 are	 the	 main	 regulators	 of	 lipid	 levels	 in	 the	 circulation	 (1.1.2).	 As	

mentioned	 above,	 adipocytes	 secrete	 FFA	 in	 the	 process	 of	 lipolysis	 [14].	 Of	 note,	

PKD1adipo.	Δ/Δ	mice	 present	 reduced	 FFA	 levels	 compared	 to	 the	 control	mice	when	

fed	 with	 HFD	 (Figure	 3,	 F).	 This	 indicates	 that	 PKD1	might	 promotes	 lipolysis	 or/and	

suppresses	FFA	oxidation	in	adipocytes	or	in	other	peripheral	organs.		

Since	the	levels	of	adipokines	leptin	and	adiponectin	are	not	changed	in	PKD1adipo.	Δ/Δ	

mice	fed	HFD	(unpublished	data	generated	by	M.	Löffler	et	al.)	and	physical	activity	of	

mice	 is	 not	 altered	 by	 deletion	 of	 PKD1,	 we	 postulate	 that	mice	 deficient	 for	 PKD1	

specifically	 in	adipocytes	present	 increased	energy	expenditure	due	 to	 the	enhanced	

metabolic	activity	of	adipocytes.			

However,	the	precise	mechanism	of	PKD1-dependent	regulation	of	energy	expenditure	

and	 FFA	 levels	 are	 not	 known.	 Also,	 the	 physiological	 conditions	 when	 PKD1	 is	

activated	were	not	yet	identified	in	adipocytes.	For	these	reasons,	PKD1	and	its	impact	

on	regulation	of	metabolic	homeostasis	is	subject	of	this	study.	
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1.3 Aim	of	the	study	

In	 adipose	 tissue,	 imbalance	 of	 energy	 homeostasis	 by	 excessive	 energy	 intake	 over	

energy	dissipation	and	excessive	TG	accumulation	in	these	cells	results	in	obesity,	and	

eventually	 in	 development	 of	 metabolic	 diseases	 [1,	 14,	 22].	 PKD1	 is	 involved	 in	

regulation	 of	 many	 diverse	 physiological	 and	 pathophysiological	 processes	 in	

vertebrates	[30,	36-38,	62],	(1.2.1).	However,	the	role	of	PKD1	in	adipocytes	physiology	

and	 pathophysiology	 has	 not	 been	 fully	 understood.	 Also,	 physiological	mechanisms	

regulating	PKD1	in	adipocytes	are	still	not	known.		

Therefore,	 this	 study	 focused	 on	 three	 specific	 goals:	 The	 first	 one	 was	 the	

identification	 of	 physiological	 conditions	 that	 regulate	 PKD1	 protein	 levels,	 PKD1	

expression,	 and	 its	 activity	 in	 murine	 adipocytes.	 The	 response	 of	 PKD1	 in	 murine	

adipose	tissue	to	feeding	and	fasting	of	mice,	and	further	analysis	of	the	response	to	

stimulated	lipolysis	in	white	adipocytes	were	in	focus.	In	other	experiment,	silencing	of	

ATGL	was	used	to	distinguish	effect	of	lipolysis	and	its	products	on	PKD1	from	effect	of	

direct	stimulation	of	adipocytes	with	isoproterenol	at	inhibited	lipolysis	in	these	cells.	

Furthermore,	the	condition	of	over-nutrition	and	its	influence	on	PKD1	expression	and	

activity	in	HFD-induced	obese	mice	was	tested.	In	3T3-L1	adipocytes	that	overexpress	

PKD1	 with	 altered	 activity,	 distribution	 of	 PKD1	 within	 the	 cell	 was	 analyzed	 using	

immunofluorescent	staining.	

As	 second	 goal,	 this	 study	 elucidated	 the	 impact	 of	 PKD1	 on	 lipolysis	 rate	 in	

adipocytes.	To	test	a	dependency,	lipolysis	essay	was	conducted	with	murine	adipose	

tissue	specifically	deficient	for	PKD1.		

Finally,	aim	of	this	study	was	also	to	test	the	effect	of	PKD1	deletion	in	adipocytes	on	

the	expression	of	genes	implicated	in	regulation	of	energy	dissipation	in	adipocytes.		

Hereby	a	better	understanding	of	the	role	of	PKD1	in	the	regulation	of	adipose	tissue	

function,	especially	in	energy	dissipation,	and	dysfunction	of	adipocytes	in	the	context	

of	obesity	should	be	given. 
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2 Materials	

2.1 Cell	line	

All	 experiments	 on	 cells	 from	 the	 cell	 culture	 were	 performed	 with	 3T3-L1	 mouse	

embryonic	 fibroblasts	 (ATCC®	 CL-173™)	 obtained	 from	 the	 American	 Type	 Culture	

Collection.	Cells	were	grown	and	differentiated	into	adipocytes	as	described	in	3.1.		

2.2 Mouse	models	

Epigonadal	 white	 adipose	 tissue	 (epiWAT)	 from	 male	 C57BL/6	 mice	 was	 kindly	

provided	by	the	research	group	G.	Sumara	at	Rudolf-Virchow-Zentrum	Würzburg.		

	

PKD1flox/flox	mice	[54]	and	adiponectin	promotor-driven	Cre	mice	[69]	were	purchased	

from	 Jackson	 Laboratory.	 From	 these,	 AG	 Sumara	 generated	 PKD1-knockout	

(PKD1adipo.Δ/Δ)	mice	with	specific	deletion	of	PKD1	in	white	and	brown	adipose	tissue.	

The	region	between	the	loxP	sites	is	deleted	by	Cre	recombinase	in	adipocytes	[54].	

	

Animal	 experiments	were	 approved	by	 the	 local	 institutional	 animal	 care	 (Regierung	

von	 Unterfranken,	 Germany)	 and	 conform	 to	 regulations	 of	 state.	 Animal	 protocol	

number	AK	55.2-2531.01-124/13,	approved	on	28.01.2014.			

2.3 siRNA	and	accessories	

To	knock	down	PKD1	and	ATGL	 in	adipocytes	 from	cell	 culture	small	 interfering	RNA	

(siRNA)	 was	 used.	 With	 the	 method	 called	 RNA	 interference	 (RNAi)	 siRNA	 has	 the	

ability	to	cleave	complementary	mRNA	targets	and	therefore	silence	its	protein	[70].		

All	 products	 were	 purchased	 from	 Dharmacon™	 GE	 Healthcare	 and	 prepared	 as	

recommended	 in	protocols	provided	by	 the	company.	One	volume	of	Dharmacon	5x	

siRNA	Buffer	 (Cat.-No.:	B-002000-UB-100)	was	diluted	 in	 four	volumes	of	RNAse-free	

water	 (Cat.-No.:	 B-002000-WB-100)	 to	 generate	 a	 1x	 solution	 in	 which	 siRNA	 was	

resuspended	 to	 a	20	μM	stock.	 To	ensure	quality	 for	 every	use,	 the	 suspension	was	

aliquoted	 and	 stored	 at	 -20	 °C	 [71].	 For	 transfection	 DharmaFECT	 Duo	 Transfection	

Reagent	(Cat.-No.:	T-2010-03)	was	used	as	described	in	3.1.3.	
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Description	 Catalogue	No.:	 Target	sequence	

siGENOME	 Mouse	

SMARTpool	siRNA,	Prkd1	

M-048415-01-0005	

D-048415-01	

D-048415-02	

D-048415-03	

D-048415-04	

	

GAAGAGAUGUAGCUAUUAA	

GAAAGAGUGUUUGUUGUUA	

CAUAAGAGAUGUGCAUUUA	

CAGCGAAUGUAGUGUAUUA	

siGENOME	 Mouse	

SMARTpool	siRNA,	Pnpla2	

(Synonym:	ATGL)	

M-040220-01-0020	

D-040220-01	

D-040220-02	

D-040220-03	

D-040220-04	

	

GAAAUUGGGUGACCAUCUG	

GGAGAGAACGUCAUCAUAU	

GCACAUUUAUCCCGGUGUA	

UGAAGCAGGUGCCAACAUU	

siGENOME	 Non-Targeting	

siRNA	#1	

D-001210-01-20	 UAGCGACUAAACACAUCAA	

	 	 	

	

2.4 Plasmids	and	accessoires	

Electroporation	 technique	 with	 4D-NucleofectorTM	 X	 Unit	 was	 used	 to	 introduce	

plasmids	 to	cells.	 For	both,	3T3-L1	pre-adipocytes	and	 fully	differentiated	adipocytes	

SE	Cell	Line	4D-Nucleofector®	X	Kit	L	(24	RCT)	was	purchased	from	Lonza.		

All	 Flag-tagged	 PKD1	 plasmids	 including	 wild	 type	 (wt),	 kinase	 dead	 (kd),	 and	

constitutive	active	(ca)	forms	as	well	as	the	non-expressing	empty	vector	were	kindly	

provided	by	Romeo	Ricci	(Institute	of	Cell	Biology,	ETH	Zurich,	Switzerland)	and	stored	

at	 our	 laboratory	 of	 G.	 Sumara	 research	 group.	 Constitutively	 active	 kinase	 is	

generated	by	mutation	of	murine	PKD1	at	ser-744	and	ser-748	sites	 to	glutamic	acid	

mimicking	 phosphorylation,	whereas	 alteration	 to	 alanine	 of	 these	 sited	 results	 in	 a	

kinase	that	is	resistant	to	phosphorylation	and	therefore	cannot	be	activated	[32].	

	

Expression	 Name	of	plasmid	

empty	 pcDNA5	Flag-empty	
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PKD1,	wild	type	 pcDNA5	Flag-PKD1	WT	

PKD1,	kinase	dead	 pcDNA5	Flag-PKD1	KD	

PKD1,	constitutive	active	 pcDNA5	Flag-PKD1	2S2E	

	

2.5 Antibodies	

Primary	antibodies	were	stored	at	-20	°C	and	freshly	diluted	for	use	as	recommended	

in	TBST	with	5	%	BSA.	Dilutions	were	frozen	and	repetitively	used.	

	

Primary	antibody	target	 Specification	&	Product	No.	 Supplier	

GAPDH	 Rabbit;	G9545	 Sigma-Aldrich	

β-Actin	 Mouse,	monoclonal;	A5441	 Sigma-Aldrich	

ATGL	 Rabbit	mAb;	#2439	 Cell	Signaling	

PKD/PKCμ	 Rabbit;	#2052	 Cell	Signaling	

Phospho-PKD/PKCμ	Ser916	 Rabbit;	#2051	 Cell	Signaling	

Phospho-PKD/PKCμ	Ser744/748	 Rabbit;	#2054	 Cell	Signaling	

DYKDDDDK	 Tag	 (9A3)	

(Synonym:	 Anti-Flag®	 M2	

trademark	by	Sigma-Aldrich)	

Mouse	mAb;	#8146	 Cell	Signaling	

	

Both	 secondary	 antibodies	 were	 kept	 at	 4	 °C.	 For	 use	 in	 Western	 blot,	 they	 were	

diluted	in	TBST-milk	with	5	%	BSA.		

	

Secondary	antibody	 Specification	&	Product	No.	 Supplier	

Anti-Rabbit	 Goat;	 AMDEX;	 IgG	 Horseradish	

Peroxidase	Conjugate	GERPN4301	

Sigma-Aldrich	

Anti-Mouse	 Sheep;	AMDEX;	IgG-HRP	GERPN4201	 Sigma-Aldrich	

	

Secondary	antibodies	used	for	immunofluorescence	were	protected	from	light.	

	

Secondary	antibody	 Specification	&	Product	No.	 Supplier	
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Anti-Goat	 Donkey;	 polyclonal;	 IgG	 Alexa	

fluor®	568	conjugate	

Thermo	 Fisher	 Scientific,	

life	technologies	

Anti-mouse		 Mouse;	 IgG	 (H+L);	 polyclonal,	

Alexa	fluor®	488	conjugate	

A-11001	

Thermo	 Fisher	 Scientific,	

life	technologies	

	

Fluoroshield™	with	DAPI,	 histology	mounting	medium	 from	 Sigma-Aldrich,	was	 used	

for	fluorescence	preservation	and	DNA	counterstaining.	

	

2.6 Primer	

Primer	specificity	was	investigated	using	Primer-BLAST	program	provided	by	NCBI	and	

ordered	from	Eurofins	Genomics.	The	manufacturer	provided	dilution	instructions	for	

100	μM	dilutions.	After	dilution,	primer	were	stored	at	-20	°C	and	for	direct	use	in	qRT-

PCR	diluted	to	10	μM	with	RNase-free	water.	

RPL13a	was	 chosen	 to	be	a	 suitable	housekeeping	gene	 for	 relative	gene	expression	

analysis	[72].	

	

Name	of	gene	 Primer	sequence	(5’	à	3’)	 Accession	number	

Protein	kinase	D	1,	exon	1-2	

- foreward	primer	

- reverse	primer	

	

GGGGGCATCTCGTTCCATC	

GTGCCGAAAAAGCAGGATCTT	

NM_008858.3	

Protein	kinase	D	1,	pair	3	

- foreward	primer	

- reverse	primer	

	

CCGTGAGAAGAGGTCAAATTCG	

GTGGCACCTTCACCTTAGACA	

NM_008858.3	

Ribosomal	protein	L13a	

- foreward	primer	

- reverse	primer	

	

CCCTCCACCCTATGACAAGA	

GCCCCAGGTAAGCAAACTT	

NM_009438	

Patatin-like	 phospholipase	

domain	containing	2	(Pnpla2;	

Synonym:	ATGL)	

	

	

	

NM_025802	
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- foreward	primer	

- reverse	primer	

CAACGCCACTCACATCTACGG	

GGACACCTCAATAATGTTGGCAC	

	 	 	

	

	

2.7 Chemicals	and	reagents		

	

Chemicals		

Chemical	 Supplier	

Ethanol	96%	 Carl	Roth	

Chloroform	≥	99%	 Carl	Roth	

Methanol,	BioChemica	 PanReac	AppliChem	

Albumin	fraction	V,	≥	98	%,	pulverized	 Carl	Roth	

Bovine	serum	albumin,	fatty	acid	free,		

≥	96	%,	pulverized	

Sigma-Aldrich	

TEMED	99	%	 Carl	Roth	

Glycin	 Carl	Roth	

TRIS,	PUFFERAN	≥	99,3	%	 Carl	Roth		

Glycine	≥	99	%	 Carl	Roth	

Powdered	milk	 Carl	Roth	

Protease	 and	 phosphatase	 inhibitor	

cocktail	(100X)	

Thermo	Scientific	

Triton®	X	100	 Carl	Roth	

Nonidet™	P	40	substitute	(NP40)	 Sigma	Aldrich	

Sodium	chloride ≥	99	%	(NaCl) Carl	Roth	

Hydrochloric	acid	(HCl)	 Sigma	Aldrich	

Tween®	20	 Carl	Roth	

SDS	Pellets	≥	99	%,	for	biochemestry	 Carl	Roth	

Ammonium	 peroxydisulphate	 (APS) ≥98	

%,	p.a.,	ACS	

Carl	Roth	
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Acrylamide	 	

Adenosine	 5ʹ-triphosphate	 disodium	 salt	

hydrate,	grade	I,	≥99	%,	from	microbial	 

Sigma	Aldrich	

(−)-Isoproterenol	 (+)-bitartrate	 salt,	

powder	(I2760)	

Sigma	Aldrich	

Paraformaldehyde,	extra	pure,	DAC	 Carl	Roth	

	

Reagents	

Free	Glycerol	Reagent	 Sigma-Aldrich	

NEFA-HR	(2)	 Wako	

Clarity	Western	ECL	Substrate	 BioRad	

Restore	 Plus	 Western	 Blot	 Stripping	

Buffer	

Thermo	Scientific	

QIAzol	lysis	Reagent	 QIAGEN	

Bradford	Protein	Assay,	Quick	Start	 BioRad	

SYBR	 Green	 Master	 (ROX),	 FastStart	

Universal	

Roche	

PageRuler	Plus	Prestained	Protein	Ladder	 Thermo	Scientific	

First	Strand	cDNA	Synthesis	Kit	 Thermo	Scientific	

	

2.8 Buffer	and	other	recipes		

All	self-made	buffers	were	made	freshly	with	ultra	pure	water	(UPW).		

	

Lysis	buffer	 384	ml	20	mM	TRIS	(pH	7.5)	

384	ml	150	mM	NaCl	

384	ml	20	mM	β-glycerophosphate	

1	ml	5	mM	MgCl	

5	ml	5	%	glycerol	

200	μl	0.2	%	NP40	

200	μl	0.2	%	Triton	X-100	
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aliquots	of	10	ml	were	stored	at	-20	°C	and	

thawed	before	use	

	10	x	Tris-buffered	saline	(10	x	TBS)		 24.2	g	TRIS	

80	g	NaCl	

added	 up	 to	 1	 l	 solution	 with	 UPW	 and	

adjusted	to	pH	7.6	with	HCl	

TBS	 100	ml	10	x	TBS	

900	ml	UPW	

1	x	TBS	0.1	%	Tween	(TBST)	 999	ml	TBS	

1	ml	Tween		

TBST	5	%	milk	(TBST-milk)	 100	ml	TBST	

5	g	powdered	milk	

10	x	running	buffer-stock	 30.27	g	TRIS	

144.0	g	glycine	

add	up	to	1	l	total	volume	with	UPW	

1	x	running	buffer	 100	ml	10	x	running	buffer-stock	

900	ml	UPW	

5	ml	20%	SDS	

1	x	transfer	buffer	(storage:	4	°C)	 100	ml	10	x	running	buffer-stock	

700	ml	UPW	

200	ml	methanol	

1.5	M	TRIS-stock,	pH	8.6	 90.82	g	TRIS	

500	ml	UPW	

adjusted	to	pH	8.6	with	HCl	

2	M	TRIS-stock,	pH	6.8	 121.1	g	TRIS	

500	ml	UPW	

adjusted	to	pH	6.8	with	HCl	

8	%	separating	gel	 10.7	ml	UPW	

5	ml	1.5	M	TRIS	pH	8.6	

384 ml	40	%	acylamide	
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100	μl	20	%	SDS	

200	μl	10	%	APS	

20	μl	TEMED	

10	%	separating	gel	 9.8	ml	UPW	

5	ml	1.5	M	TRIS	pH	8.6	

5	ml	40	%	acylamide	

100	μl	20	%	SDS	

67.6	μl	10	%	APS	

17.5	μl	TEMED	

4	%	stacking	gel	 8.2	ml	UPW	

620	μl	2	M	TRIS	pH	8.6	

946	μl	40	%	acylamide	

50	μl	20	%	SDS	

100	μl	10	%	APS	

10	μl	TEMED	

Loading	dye	(Lammelli	buffer)	 1.5	ml	300mM	Tris	pH	6.8	(2M	stock)	

1g	10%	SDS	 	 	 	 	

5mL	50%	glycerol		 	 	

2.5mL	25%	β-mecaptoethanol	 	

spatula	tip	Bromophenolblue	 	 	

	

2.9 Media	and	cell	culture	solutions	

Item	 Catalogue	number	 Supplier	

DMEM,	 high	 glucose,	 GlutaMAX™	

Supplement,	pyruvate	

31966-021	 Gibco®	life	technologies	

DMEM,	low	glucose,	pyruvate	 31885-023	 Gibco®	life	technologies	

DPBS,	no	calcium,	no	magnesium	 14190-094	 Gibco®	life	technologies	

Gentamicin	(10	mg/mL)	 15710-049	 Gibco®	life	technologies	

Insulin	solution	human	 I9278	 Sigma-Aldrich	

Trypsin-EDTA	(0.05%),	phenol	red	 25300-054	 Gibco®	life	technologies	
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FBS	 (Fetal	 Bovine	 Serum,	 qualified,	

E.U.-approved,	South	America	origin)	

10270-106	 Gibco®	life	technologies	

FCS	(Calf	bovine	serum,	iron	fortified)	 30-2030	 ATCC®	

Accutase®	solution	 A6964	 Sigma-Aldrich	

Tryptan	blue	stain	(0.4%)	 T10282	 life-technologies	

Dexamethasone	 	 	

IBMX	 	 	

BD	 Matrigel™	 matrix	 growth	 factor	

reduced	

356230	 BD	Biosciences	

Opti-MEM®	I	reduced	serum	medium	 31985-070	 Gibco®	life	technologies	

	

2.10 Consumables		

	

Consumption	Item	 Supplier	

Pipette	tips	(0.5	–	20,	2	–	200,	1000	μl)	 Biosphere	

Filter	tips	(0.5	–	20,	2	–	200,	1250	μl)	 Biosphere	

Repetitive	pipette	tips	(0.1,	0.5,	1.25,	2.5,	5.0	ml)	 VWR	

Tubes	(15,	50	ml)	 Sarstedt	

Tubes,	SafeSeal	(0.5,	1.5,	2.0	ml)		 Sarstedt	

Powder	free	nitrile	examination	gloves,	S	 Medline	

Pasteur	pipettes	 Carl	Roth	

Super	RX	medical	x-Ray	 Fujifilm	

Blotting	and	chromatography	papers,	grade	3	MM	CHR,	46	

x	57	cm	

Whatman	

Immobilon-P	transfer	membrane,	PVDF	0.45	µm	 EMD	Millipore	

384-Well	 clear	 optical	 reaction	 plate,	 ABI	 PRISM,	 Applied	

Biosystems	

life-technologies	

Optical	adhesive	film,	MicroAmp,	Applied	Biosystems	 life-technologies	

Standard	scissors	

Standard	and	fine	foreceps	

Fine	Science	Tools	
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Tissue	culture	dish	100	(Standard,	Cell+)	 Sarstedt	

Tissue	culture	plate	Cell+	(6-well,	12-well)	 Sarstedt	

Syringe	filter,	Filtropur	S	0.2		 Sarstedt	

Serological	pipette	(5,	10,	25	ml)	 Sarstedt	

MicroAmpTM	Optical	384-well	clear	optical	reaction	plate	 Applied	Biosystems	

MicroAmpTM	Optical	adhesive	film	 Applied	Biosystems	

Cover	slip,	round,	18	mm	 Carl	Roth	

Microscope	slides,	76	x	26	mm	 Carl	Roth	

Parafilm®	M		 Carl	Roth	

	

2.11 Instruments	and	equipment		

	

Technical	Device	 Supplier	

Autoclave	sterilizer,	Systec	DX-100	 Microbiology	International	

Autoclave,	Systec	VX-120	 Microbiology	International	

Ultrapure	water,	TKA	GenPure	xCAD	 Thermo	Fischer	Scientific	

Digital	scale,	TE3102S	 Sartorius	

Digital	scale,	EL303	 Mettler	Toledo	

Microplate	analyzer,	Victor³	1420		 PerkinElmer	

Water	bath,	20mT	 P-D	 Industriegesellschaft	 mbH	

Prüfgerätewerk	Dresden	

Multifuge	X3R	 Heraeus	

Centrifuge	5424	R	 Eppendorf	

Thermomixer	comfort		 Eppendorf	

Microcentrifuge,	Galaxy	MiniStar	 VWR	

Vortexer,	RS-VA	10	 Phoenix	Instrument	

Magnetic	stirrer,	RSM-10HP	 Phoenix	Instrument	

Incubator,	Hera	Cell	240	 Heraeus	

Incubator,	C150	 Binder	

Vertical	flow	hood	 BDK	 Luft-	 und	 Reinraumtechnik	
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GmbH	

Microscope,	CKX31	 Olympus	

Counting	champers		 Neubauer-improved	

Sequence	detection	system,	ABI	Prism	7900HT,	

Applied	Biosystems	

life-technologies	

Thermal	cycler,	T100	 BioRad	

Electronic	repeat	pipettor, Repetman	 Gilson	

Pipetts	(different	sizes)		 Eppendorf,	VWR	

Motorized	pipette	controller	 Gilson	

x-ray	cassette	 Amersham	Biosciences	

Bench-top	homogenizer,	PT	1600E	 Polytron	

pH-meter,	FiveEasy	FE20	 Mettler	Toledo	

Power	supply,	EPS-300X	 C.B.S.	Scientific	

X-ray	film	processor,	Cawomat	2000	IR	 CAWO	

Spectrophotometer,	NanoDrop	2000	c	 Thermo	Scientific	

4D-NucleofectorTM	X	Unit	 Lonza	

Automated	 upright	 mircoscope	 system,	 Leica	

DM5500	B	

Leica	Microsystems	

	

2.12 Software	

Following	software	was	used	to	gather,	process,	and	analyze	data:	

Wallac	1429	Workstation	

Microsoft	Office	Word,	Excell,	Powerpoint	2011	

AdobeReader	

SDS	2.2	Software	(qRT-PCR)	Applied	Biosystems	

Leica	Application	Suite	(LAS)	AF	lite	provided	by	Leica	Microsystems	

Adobe	Illustrator	CC	
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3 Methods	

3.1 Cell	culture	

3T3-L1	 cells	 were	 cultured	 using	 protocol	 provided	 by	 ATCC	 briefly	 summarized	 as	

follows.	Standard	incubation	procedures	were	performed	at	37	°C,	95%	humidity	and	a	

5%	CO2	concentration	maintained	by	a	suitable	incubator.	Medium	was	always	heated	

to	37	 °C	before	use	except	when	stated	differently.	 FCS	and	FBS	were	 inactivated	 in	

water	bath	at	56	°C	for	30	minutes	and	aliquoted	in	50	ml	tubes	to	be	stored	at	-20	°C.	

Before	 use,	 proper	 amounts	were	 thawed	 and	 heated	 to	 37	 °C	 again.	 All	work	with	

cells	was	done	using	the	aseptic	bench	top	and	spraying	utilities	with	70	%	ethanol	to	

guarantee	aseptic	conditions.	

	

For	 long-term	storage	3T3-L1	pre-adipocytes	were	maintained	in	DMEM	high	glucose	

media	containing	10%	FCS	and	5%	DMSO	in	cryopreservation	tubes	and	kept	in	-80	°C	

for	24	hours	before	placed	in	liquid	nitrogen	until	ready	for	use	as	described	in	ATCC	

3T3-L1	product	sheet.		

	

3T3-L1	 cells	were	 grown	 in	 growth	medium	composed	of	DMEM	high	 glucose,	 10	%	

FCS,	 and	 0.4	 %	 gentamicine	 in	 100	 mm	 tissue	 culture	 dishes	 with	 a	 total	 of	 10	 ml	

growth	 medium	 per	 dish	 in	 an	 incubator	 for	 proliferation.	 Growth	 medium	 was	

exchanged	every	2	–	3	days	to	obtain	appropriate	concentrations	as	recommended	by	

ATCC.	If	sub-culturing	of	cells	was	intended,	cells	were	not	allowed	to	reach	more	than	

approximately	70	%	confluence	 [73].	 In	 this	 case,	 growth	medium	was	 removed	and	

cells	on	 the	dish	were	gently	washed	with	PBS.	2.0	ml	Trypsin	was	added	onto	each	

dish	 and	 kept	 in	 the	 incubator	 for	 approximately	 2	minutes	 until	 cells	 could	 detach.	

The	new	passage	of	cells	was	collected,	spun	down,	and	resuspended	in	growth	media	

to	 be	 split	 onto	 tissue	 culture	 dishes	 again.	 For	 experiments,	 passage	 numbers	 no	

higher	than	11	were	used.	

3.1.1 3T3-L1	adipocyte	differentiation	

In	 order	 to	 induce	 differentiation	 of	 3T3-L1	 pre-adipocytes	 into	 adipocytes	 as	

recommended	 by	 ATCC,	 cells	 were	 grown	 to	 confluence	 and	 maintained	 post-
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confluent	 for	48	hours	 [73].	Then,	growth	medium	was	 replaced	with	differentiation	

medium	 composed	 of	 DMEM	 high	 glucose,	 10	 %	 FBS,	 0.4	 %	 gentamicine,	 1.0	 μM	

dexamethasone,	0.5	mM	IBMX,	and	1.0	μg/ml	Insulin.	After	48	hours	of	incubation	the	

medium	 again	 was	 replaced	 by	 maintenance	 medium	 containing	 only	 DMEM	 high	

glucose,	 10	%	 FBS,	 0.4	%	 gentamicine,	 and	 1.0	 μg/ml	 insulin.	Medium	was	 renewed	

every	2	–	3	days	and	cells	were	fully	differentiated	after	7-13	days.			

3.1.2 Replating	3T3-L1	adipocytes	for	conduction	of	experiments	

When	experiments	with	differentiated	3T3-L1	adipocytes	were	to	be	performed,	they	

were	collected	and	re-plated	in	the	following	manner:	Depending	on	the	experiment,	

either	6-	or	12-well	plates	were	prepared	with	250	or	500	μl	of	ice-cold	PBS	with	0.5	%	

matrigel	per	well.	After	30	minutes	in	the	incubator	the	solution	was	gently	removed	

and	washed	 off	 with	 ice-cold	 PBS	 again.	 This	 preparation	 supports	 reattachment	 of	

adipocytes	 and	 prevents	 detachment	 concurrently,	 since	 mature	 adipocytes	 rather	

float	on	the	surface	of	liquids.	Meanwhile,	media	was	removed	from	the	adipocytes	in	

the	 100	mm	 dish	 and	 4	ml	 of	 accutase	 solution	 was	 spread	 on	 each	 dish.	 After	 10	

minutes	of	incubation	adipocytes	started	to	detach,	were	washed	off	the	dish	with	the	

maintenance	media,	and	pipetted	in	a	50	ml	tube.	The	tube	containing	the	adipocytes	

was	 then	 centrifuged	 at	 125	 x	 g	 for	 5	 minutes.	 The	 supernatant	 was	 removed	 and	

remaining	 cell	 pellet	 was	 dissolved	 in	 regular	 maintenance	 media	 for	 counting	 and	

proper	 distribution	 into	 the	 prepared	 6-	 or	 12-well	 dish	 at	 a	 certain	 cell	 density	 as	

described	in	the	experiments.		

3.1.3 Transfection	of	cells	using	siRNA	

Transfection	 was	 performed	 when	 3T3-L1	 adipocytes	 reached	 state	 of	 full	

differentiation	 as	 described	 in	 3.1.	 Either	 6-	 or	 12-well	 plates	 had	 to	 be	 prepared	

beforehand	as	stated	in	3.1	depending	on	the	purpose	of	the	experiment:	6-well	plates	

were	used	for	Western	blot	analysis	of	proteins	and	for	quantitative	PCR	to	detect	RNA	

levels	12-well	plates	were	used.		

	

After	harvest	of	cells	as	described	in	3.1	they	initally	were	not	seeded	but	kept	in	a	50	

ml	 tube	 diluted	 in	maintenance	media	 to	 be	 counted	 using	 Neubauer	 cell	 counting	
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chamber.	For	counting,	50	μl	of	carefully	mixed	cell	solution	was	stained	with	50	μl	of	

tryptan	blue.	Only	living	cells	that	appeared	bright,	were	counted	in	4	squares	(4	mm2),	

then	devided	by	4	to	provide	the	average.	This	number	of	cells	was	multiplied	by	the	

dilution	 factor	 with	 tryptan	 blue	 (2)	 and	 the	 factor	 of	 Neubauer	 counting	 chamber	

(10,000)	which	gives	the	total	amount	of	cells	per	milliliter	[74].		

	

For	 efficient	 siRNA	 transfection	of	 3T3-L1	 adipocytes	1.16	 x	 105	 cells/cm2	were	used	

following	 instructions	 for	 optimization	 of	 transfection	 recommended	 by	 Kilroy	 et	 al.	

[75].	The	number	of	recommended	cells	per	cm2	equals	4.64	x	105	adipocytes	per	well	

in	a	12-well	plate	(approximately	4	cm2	per	well)	and	11.136	x	105	adipocytes	per	well	

in	a	6-well	plate	(approximately	9.6	cm2	per	well).	The	appropriate	amount	of	1	μl	20	

mM	 siRNA/cm2	 was	 mixed	 with	 10	 μl	 OptiMEM/cm2	 and	 left	 in	 a	 tube	 at	 room	

temperature	for	5	minutes.	Then	1.4	μl	DharmaFECT	Duo/cm2	combined	with	18.6	μl	

optiMEM/cm2	were	added	to	the	first	tube.	After	20	minutes	the	equivalent	amount	of	

cells	per	cm2	was	added	to	the	tube	whereupon	the	complete	solution	was	spread	on	

either	a	6-	or	a	12-well	plate	according	to	the	given	parameter.		

The	maintenance	medium	needed	to	be	changed	every	24	hours.	

3.1.4 Transfection	of	cells	with	plasmids	

3T3-L1	pre-adipocytes	and	fully	differentiated	adipocytes	 (3.1)	were	transfected	with	

plasmids	 via	 electroporation	 using	 Lonza’s	 4D-NucleofectorTM	 technology.	 The	 cell-

specific	protocol	and	program	were	provided	by	Lonza.	According	to	the	manufacturer,	

the	 program	 CM-137	 was	 used	 to	 transfect	 3T3-L1	 pre-adipocytes	 and	 CM-133	 for	

adipocytes	 [76].	Minor	 changes	 were	 undertaken	 when	 plating	 transfected	 cells	 for	

immunofluorescent	 staining:	One	100	μl	 cuvette	was	 spread	on	4	wells	 of	 a	 12-well	

plate	 containing	 cover	 slips	 prepared	 with	 0.5	 %	 matrigel	 coating	 as	 stated	 before	

(3.1).	 This	 approach	 guaranteed	 well-distributed	 and	 less	 overlaying	 cells	 on	 slides	

allowing	 better	 examination	 under	 the	 microscope.	 Transfected	 cells	 were	 kept	 in	

culture	for	24	hours	until	further	analyzed.	

Transfection	 efficiency	was	 confirmed	using	GFP-vector	 transfected	 cells	 provided	 in	

Lonza’s	kit.		
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3.1.5 Immunofluorescence	

For	 immunofluorescent	 staining,	 cells	 were	 plated	 on	 cover	 slips	 in	 12-well	 plates	

(3.1.4).	 The	 cells	 were	 washed	 with	 PBS	 3	 times	 before	 fixation	 with	 4	 %	

paraformaldehyde	 in	PBS	at	 room	 temperature	 for	10	minutes	 [77].	After	washing	3	

times	 with	 PBS	 the	 cells	 were	 permeabilized	 with	 0.1	 %	 triton	 X-100	 in	 PBS	 for	 15	

minutes	at	room	temperature.	Cells	were	blocked	with	2	%	BSA	in	PBS	for	1	hour	until	

repeatedly	washed	 and	 ready	 for	 antibody	 incubation.	 To	 save	 supplies	 of	 antibody	

incubation	 process,	 cover	 slips	 were	 transferred	 on	 parafilm	 placed	 inside	 a	 wet	

chamber.	

Primary	 anti-flag®	 antibody	 was	 diluted	 1:1600	 in	 PBS	 containing	 1	 %	 BSA	 and	

approximately	100	μl	was	distributed	onto	each	cover	slip	except	the	negative	control	

containing	secondary	antibody	only.	After	an	over-night	incubation	at	4	°C	cover	slips	

were	washed	3	times	with	PBS	and	incubated	with	anti-goat	alexa	fluor®	568	conjugate	

secondary	antibody	(1:500	in	PBS	0.5	%	BSA,	90	minutes,	4°C)	except	negative	control	

containing	 primary	 antibody	 only.	 Again,	 cover	 slips	were	washed	 3	 times	with	 PBS.	

Then,	 they	 were	 covered	 with	 phalloidin-iFluor	 555	 reagent	 according	 to	 the	

manufacturers	 (abcam)	 instructions	 in	PBS	1	%	BSA	 for	90	minutes.	 Thereafter,	 they	

were	 washed	 3	 times	 with	 PBS	 again.	 Approximately	 50	 μl	 mounting	 medium	

containing	 DAPI	 was	 used	 to	 fixate	 cover	 slips	 on	 the	 glass-slides	 and	 co-stain	 the	

nucleus.	 Finished	 slides	 were	 then	 kept	 in	 the	 dark	 at	 4	 °C.	 Analysis	 under	 the	

microscope	was	possible	one	day	after	mounting.	The	primary	and	secondary	negative	

controls	 used	 for	 validation	 of	 the	 efficiency	 of	 method	 did	 not	 display	 fluorescent	

activity	(data	not	shown).		

Pictures	were	taken	with	63X-objective	of	mircoscope	system	from	Leica.	

3.2 Mouse	adipose	tissue	under	different	metabolic	conditions	

Mouse	adipose	tissue	samples	for	the	fasting	experiment	(4.1.1)	were	taken	from	mice	

that	had	free	access	to	normal	rodents	chow	diet	(ND).	The	experiment	was	conducted	

with	nine	mice	for	the	12-hour	and	nine	mice	for	the	24-hour	fasting	experiment.	Six	of	

each	were	withdrawn	 from	 food	 for	 either	 12	 hours	 over	 night	 or	 for	 24	 hours.	 Of	

these,	three	mice	were	refed	in	each	experimental	group	after	12	or	24	hours	again.		
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For	 experimental	 comparison	 of	 PKD1	 response	 to	 normal	 and	 high	 fat	 diet	 (4.2),	 8	

mice	were	fed	with	ND	supplied	by	the	institutes	animal	house	and	7	mice	with	high	

caloric	 rodents	diet	 (HFD)	containing	58	kcal%	 fat	and	sucrose	 (Product-No.:	D12331	

from	Research	Diets)	for	24	weeks.		

PKD1flox/flox-mice	and	PKD1adipo.Δ/Δ-mice	were	either	on	ND	(4.4)	or	fed	with	HFD	for	

24	weeks	(4.5)	before	conducting	the	analysis.	

3.2.1 Dissection	of	adipose	tissue		

After	 mice	 were	 sacrificed	 via	 cervical	 dislocation,	 epigonadal	 white	 adipose	 tissue	

(epiWAT)	 was	 quickly	 taken	 from	 the	 abdomen,	 subcutaneous	 white	 adipose	 tissue	

(subWAT)	 from	 abdominal	 skin,	 and	 brown	 adipose	 tissue	 (BAT)	 from	 interscapular	

depot	 [1].	 The	 tissue	 samples	was	 then	 portioned	 in	 2	ml	 tubes	 and	 flash	 frozen	 in	

liquid	nitrogen	for	long	time	storage.		

3.2.2 Mouse	adipose	tissue	explants	

For	 direct	 experiments	 on	 explants	 as	 in	 the	 isoproterenol	 stimulation	 experiments	

(4.1.2,	 4.4)	 epiWAT	 were	 not	 frozen	 but	 directly	 kept	 in	 high	 glucose	 DMEM	

supplemented	with	0.5%	BSA	and	sectioned	 into	20	–	24	mg	pieces.	Until	 immediate	

beginning	of	experiment	explants	were	incubated	at	37	°C,	95%	humidity	and	a	5%	CO2	

concentration	to	ensure	equal	starting	conditions.	

	

3.3 Protein	analysis	

Analysis	of	protein	levels	of	PKD1	and	ATGL	was	conducted	as	follows:		

After	 the	medium	 had	 been	 removed,	 cells	 were	 collected	 by	 pipetting	 150	 μl	 lysis	

buffer	 containing	 1	 %	 PPI	 on	 each	 well	 and	 scratching	 cells	 off	 the	 plate	 with	 cell-

scrapers.	This	step	was	done	on	ice	to	prevent	degradation	of	the	proteins	during	the	

process.	The	lysates	were	collected	in	tubes	and	stored	at	-80	°C.		

When	the	explant	adipose	tissue	was	processed	for	protein	analysis,	150	μl	lysis	buffer	

containing	 1	%	 PPI	was	 added,	 too.	 Explants	were	 then	 homogenized	 in	 tubes	with	

bench-top	homogenizer	at	15	Hz	for	2	minutes.		
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The	lysates	(cells	from	cell	culture	as	well	as	explant	adipose	tissue)	were	then	placed	

on	 ice	for	10	minutes	whereupon	they	were	centrifuged	at	13000	rpm	at	4	°C	for	10	

minutes.	 Centrifugation	 separated	 cell	 mass	 from	 a	 clear	 supernatant	 containing	

proteins,	which	was	transferred	to	a	new	tube	and	stored	at	-80	°C.	

The	proteins	were	quantified	using	Quick	Start	Bradford	Microplate	Standard	Protein	

Assay	(0.05-0.5	mg/ml)	as	described	in	the	manufacturers	instruction	manual.	For	the	

assay,	protein	samples	were	diluted	1:10	and	after	measurement,	concentrations	were	

calculated	in	excel	by	taking	an	average	of	duplicates.	Thus,	equal	amounts	of	protein	

could	be	loaded	to	conduct	Western	blot.		

Generally,	 quantities	 between	 15	 to	 50	 ug	 of	 protein	were	 used	 depending	 on	 how	

well	proteins	of	interest	were	detectable.	The	desired	quantity	of	protein	solution	was	

pipetted	 into	 tubes.	 To	 balance	 the	 difference	 of	 volume	 to	 the	most	 concentrated	

sample	of	one	experiment,	 lysis	buffer	was	added,	 so	 that	all	 samples	had	 the	same	

concentration	 of	 protein.	 Each	 sample	 was	 mixed	 with	 5	 x	 loading	 dye	 and	

denaturated	in	a	thermomixer	at	95	°C	for	5	minutes.	The	Proteins	were	separated	by	

their	molecular	weight	 in	sodium	dodecylsulphate-polyacrylamide	gel	electrophoresis	

(SDS-PAGE)	using	8	%-	or	10	%-separating	and	4	%-stacking	gel.	After	building	up	the	

blotting	system	in	running	buffer,	equal	volumes	of	the	prepared	samples	were	loaded	

into	pre-washed	chambers.	Electrophoresis	was	conducted	at	100	to	130	V	for	4	hours.	

The	 separated	 proteins	 were	 transferred	 onto	 a	 polyvinylidene	 difluoride	 (PVDF)	

membrane.	 Beforehand,	 PVDF	 membrane	 was	 activated	 in	 methanol.	 Then,	 the	

transfer	box	containing	transfer	buffer	was	build	in	the	following	order	starting	on	the	

black	side	(anode)	of	the	box:	sponge,	4	sheets	of	filter	paper,	gel,	PVDF	membrane,	4	

sheets	of	filter	paper	and	sponge.	At	75	mA	the	transfer	of	protein	was	completed	over	

night.	The	PVDF	membrane	was	blocked	in	TBST-milk	for	1	hour	at	4	°C,	washed	with	

TBST	 3	 times	 for	 15	 minutes	 at	 room	 temperature,	 and	 incubated	 with	 primary	

antibodies	diluted	in	TBST	5	%	BSA	at	90	rpm	as	follows:	

	

	 Dilution	 Incubation	 kDa	

PKD1	 1:2000	 4°C	over	night	 115	
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PKD1	(Ser916)	 1:1000	 4°C	over	night	 115	

PKD1	(Ser744/748)	 1:1000	 4°C	over	night	 115	

ATGL	 1:5000	 4°C	over	night	 54	

PKD2	 1:1000	 4°C	over	night	 105	

PKD3	 1:1000	 4°C	over	night	 110	

Anti-beta-Actin	 1:5000	 1h	room	temp.	 42	

GAPDH	 1:10.000	

1:5000	

4°C	over	night	

1h	room	temp.	

36		

	

The	 membrane	 was	 washed	 3	 times	 with	 TBST	 again	 before	 it	 was	 incubated	 with	

secondary	 antibodies	 in	 TBST-milk	 targeting	either	 rabbit	 (1:5000	dilution)	or	mouse	

antibodies	(1:10000	dilution)	in	case	of	GAPDH	for	one	hour.	After	washing	with	TBST	

and	finally	with	TBS,	protein	detection	was	performed	by	covering	the	membrane	with	

ECL	substrate	for	5	minutes.	Then	images	were	taken	via	exposure	to	X-ray	film	for	1	

second	up	to	10	minutes	depending	of	the	strength	of	light	emission.	For	comparison,	

actin	and	GAPDH	were	used	to	prove	an	equal	loading	of	protein.	

3.4 RNA	analysis	

For	ribonucleic	acid	(RNA)	level	measurements,	cells	from	culture	were	resuspended	in	

1	ml	QIAzol	per	well,	 thoroughly	scratched	off	 the	plate,	collected	 in	2	ml	 tubes	and	

rapidly	 frozen	 on	 dry	 ice.	When	 analyzing	 RNA	 of	 epiWAT,	 subWAT,	 and	 BAT	 taken	

from	mice	(3.2.1),	samples	were	homogenized	with	bench-top	homogenizer	at	15	Hz	

for	2	minutes	in	2	ml	tubes	containing	1	ml	QIAzol	and	flash	frozen	in	liquid	nitrogen.	

Samples	 could	 either	 be	 stored	 at	 -80	 °C	 or	 processed	 directly.	 Before	 processing,	

frozen	 samples	 needed	 to	 defreeze	 on	 ice.	 In	 order	 to	 extract	 RNA,	 samples	 were	

processed	 acting	 on	 the	 suggestion	 of	 quick-start	 protocol	 provided	 by	 QIAGEN	

starting	from	step	3	[78].		

	

RNA	 was	 quantified	 with	 NanoDrop	 2000	 c	 spectrophotometer.	 2.0	 μl	 RNAse	 free	

water	was	used	as	blank	and	concentration	(in	μg/ml)	of	nucleic	acid	was	measured	in	
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2.0	 μl	 of	 each	 RNA	 solution	 with	 absorbance	 at	 230nm,	 260nm,	 and	 280nm.	 To	

guarantee	 RNA	 purity,	 ratios	 of	 260nm/230nm	 and	 260nm/280nm	were	 calculated.	

According	to	the	manufacturers	technical	bulletin,	absorbance	at	230	nm	is	a	result	of	

contamination,	e.g.	traces	of	QIAzol.	Hence,	260nm/230nm	ratios	of	2.0	–	2.2	as	well	

as	260nm/280nm	ratios	of	approximately	2.0	can	be	interpreted	as	pure	RNA	samples	

whereas	 lower	 260nm/280nm	 ratios	 indicate	 contamination	with	 protein	 or	 reagent	

[79].	

	

Reverse	 transcription	 of	 RNA	 into	 complementary	 DNA	 (cDNA)	 was	 conducted	 with	

First	 Strand	 cDNA	 Synthesis	 Kit.	 Random	 hexamer	 primer	 provided	 by	 the	 kit	 were	

used	 to	 ensure	 that	 all	 RNA	 was	 transcribed.	 An	 oligo(dT)18	 primer	 binds	 only	

messenger	RNA	(mRNA)	with	poly(A)	tail	and	was	not	used	in	this	study.	Following	the	

protocol	 provided	 by	 the	 manufacturer,	 samples	 were	 pipetted	 in	 the	 following	

manner:	

1	μg	of	total	RNA	

1	μl	of	random	hexamer	primer	

RNase-free	water	added	up	to	11	μl		

Then,	samples	were	incubated	at	65	°C	for	5	minutes	as	recommended	in	the	protocol	

and	an	enzyme	mixture	was	added	containing	the	following:	

4μl	5X	reaction	buffer	

1	μl	RiboLock	RNase	Inhibitor	

2	μl	10	mM	dNTP	Mix	

2	μl	M-MuLV	Reverse	Transcriptase	

After	 vortexing	 and	 centrifugation,	 tubes	 were	 incubated	 at	 25	 °C	 for	 5	 minutes	

followed	by	60	minutes	at	37	°C	and	finally	5	minutes	at	70	°C.	For	storage,	prepared	

cDNA	samples	was	stored	at	-20°C.		

	

For	 further	 procedures,	 cDNA	 from	 explant	 tissues	 were	 diluted	 to	 1:15	 final	

concentration	and	cDNA	from	cultured	cells	to	1:3	with	RNase-free	water.	2	μl	of	the	
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cDNA	samples	(6.66	ng	and	33.33	ng	in	total)	were	pipetted	into	a	384-well	plate	and	

mixed	with	8	μl	of	the	following	master	mix:	

5	μl	FastStart	Universal	SYBR	Green	Master	(ROX)	

0.4	μl	of	10	μM	forward	primer	(final	concentration	of	0.4	μM)	

0.4	μl	of	10	μM	reverse	primer	(final	concentration	of	0.4	μM)	

2.2	μl	RNase-free	water	

FastStart	Universal	SYBR	Green	Master	(ROX)	from	Roche	is	a	ready-to-use	master	mix	

suitable	for	quantitative	real-time	polymerase	chain	reaction	(qRT-PCR)	as	 it	contains	

all	reagents	necessary.	With	a	fluorescent	dye,	double-stranded	DNA	can	be	detected.	

The	DNA	doubles	at	each	amplification	 cycle	and	 thus	 its	quantity	 is	proportional	 to	

the	fluorescent	signal.	For	relative	quantification,	threshold	cycles	(Ct)	of	samples	were	

normalized	to	the	Ct	values	of	RPL13a	as	the	housekeeping	gene	(primers	are	listed	in	

2.6).	Data	was	then	analyzed	by	comparison	of	the	fold	change	in	expression	of	specific	

genes	in	the	samples	[80].	First	step	of	qRT-PCR	is	the	activation	of	FastStart	Taq	DNA	

polymerase	(contained	 in	SYBR	green)	at	95°C	for	10	minutes.	Then,	40	cycles	 follow	

consisting	 one	 step	 denaturation	 of	 the	 double	 strand	 DNA	 (95°C	 for	 15	 seconds),	

annealing	 of	 the	 primers	 to	 the	 single	 stranded	 DNA,	 and	 elongation	where	 DNA	 is	

synthesized	 using	 DNA	 polymerase	 (primer	 dependent	 temperature	 (2.6)	 for	 60	

seconds).	 Melting	 curve	 analysis	 was	 performed	 to	 exclude	 unspecific	 product	

amplification	or	primer-dimers	[80].		

Generally,	RPL13a	reached	Ct	values	 from	17	 to	19.	All	other	primers	used	had	cycle	

numbers	of	25	to	34.		

3.5 Lipolysis	essays	

For	investigation	of	lipolysis	rate,	samples	of	cells	or	explants	were	serum	starved	for	1	

hour	in	a	medium	containing	high	glucose	DMEM	and	0.5	%	FFA-free	BSA.	For	control,	

sample	 were	 transferred	 to	 fresh	 starvation	 medium.	 For	 stimulation	 of	 lipolysis,	

samples	were	incubated	in	medium	containing	10	μM	isoproterenol	for	2	hours.		

FFAs	 in	 medium	 of	 the	 samples	 were	 quantified	 using	 NEFA-HR(2)	 reagent	 (Wako)	

according	 to	 manufacturers’	 instructions.	 Glycerol	 was	 measured	 with	 free	 glycerol	

reagent	(Sigma-Aldrich)	also	as	described	by	the	manufacturer.	
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When	 samples	 of	 lipolysis	 experiments	 were	 tested	 for	 RNA	 levels	 with	 qRT-PCR,	

samples	were	 incubated	 in	medium	containing	10	μM	 isoproterenol	 for	4	hours	and	

then	processed	as	described	in	3.4.	

3.6 Statistical	analysis		

Results	and	figures	shown	in	this	study	were	calculated	with	Microsoft	Office	Excel	and	

drawn	with	Illustrator	software.	Results	are	presented	as	mean	with	±	standard	error.	

To	show	differences	between	two	groups	Student’s	T-test	was	conducted	and	valuees	

of	*p	<	0.05	were	considered	as	significant.	Also	**p	<	0.005	and	***p	<	0.001	were	

marked	in	the	graphs.	
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4 Results	

4.1 Regulation	 of	 PKD1	 expression	 in	 adipocytes	 in	 response	 to	 different	

physiological	conditions		

Activity	of	adipocytes	depends	on	the	amount	of	nutrients	available	for	the	organism.	

Generally,	 upon	 excessive	 food	 ingestion	 adipocytes	 absorb	 the	 nutrients	 from	

circulation	and	convert	 them	into	TG	[1].	 In	contrast,	during	 food	deprivation	TG	are	

degraded	 in	 the	 process	 of	 lipolysis	 to	 produce	 FFA	 and	 glycerol	 [14].	 G.	 Sumaras	

research	 group	 showed	 that	 inactivation	of	 PKD1	 specifically	 in	 adipocytes	 results	 in	

pronounced	effect	on	function	of	these	cells	(1.2.2).	

4.1.1 Adipose	tissue	specific	expression	of	PKD1	in	response	to	fasting	and	feeding	

To	 investigate	 regulation	of	PKD1	activity	 and	PKD1	expression	or	 abundance	during	

feeding-fasting-cycles,	Western	Blot	and	RT-qPCR	were	used	in	the	first	experiment.		

In	a	preliminary	experiment	conducted	by	M.	Löffler,	epigonadal	white	adipose	tissue	

(epiWAT)	 was	 isolated	 from	 mice	 fed	 ad	 libidum,	 prolonged	 (24	 hours,	 h)	 fasted	

animals,	and	mice,	which	were	fasted	for	24	h	and	re-fed	for	the	same	period	of	time.	

To	test	effect	of	 fasting	and	 feeding	within	a	shorter	 time	period,	 in	an	 independent	

experiment	of	this	study,	one	group	of	mice	were	subjected	to	fasting	for	12h,	other	

group	was	12h-fasted	followed	by	12h	re-feeding	and	compared	to	mice	that	had	free	

access	to	food	(ad	libidum).		

This	experiment	showed	that	12	and	24	h	fasting	of	mice	results	in	reduction	of	PKD1	

activity	 in	 epiWAT	 as	 assessed	 by	 Western	 Blot	 using	 antibody	 against	 PKD1	

phosphorylated	 on	 serine	 916	 (Figure	 4,	 A	 and	 B).	 Interestingly,	 re-feeding	 of	 mice	

brought	 phosphorylation	 of	 PKD1	 on	 serine	 916	 to	 the	 levels	 observed	 in	 adipose	

tissue	 of	 unfastened	 animals	 (Figure	 4,	 A	 and	 B,	 PKD1ser916).	 Reduced	 levels	 of	

phosphorylated	 PKD1	 might	 be	 caused	 by	 diminished	 upstream	 mechanism	

phosphorylating	 this	 kinase	 or	 by	 lower	 total	 levels	 of	 PKD1	 protein.	 To	 understand	

which	 of	 these	 two	 mechanisms	 regulate	 PKD1	 activity	 in	 response	 to	 fasting,	 an	

antibody	detecting	total	levels	of	PKD1	was	used.	Results	of	Western	Blot	suggest	that	

total	PKD1	protein	levels	are	reduced	in	adipose	tissue	of	fasted	mice	and	that	PKD1	is	

re-expressed	upon	re-feeding	(Figure	4,	A	and	B,	PKD1).		
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A)	

											 	

B)	

										 	
	

C)	 D)	

	 	
Figure	4:	PKD1	protein	levels,	activity	and	gene	expression	in	adipose	tissue	of	mice	are	reduced	upon	
fasting.	For	each	experiment	9	mice	had	free	access	to	normal	chow	diet	(ad	libidum)	of	which	6	mice	
were	fasted	for	12	hours	overnight	(A,	C)	and	other	6	for	24	hours	starting	at	night	(B,	D;	conducted	by	
M.	 Löffler).	 Afterwards	 3	 of	 the	 6	 fasted	mice	were	 exposed	 to	 food	 again	 for	 either	 12	 or	 24	 hours	
(refed).	EpiWAT	was	examined	in	Western	blot	(A,	B)	and	in	RT-qPCR	(C,	D).		

	

Therefore,	reduction	of	phosphorylated	PKD1	levels	in	fasted	mice	might	be	caused	by	

lower	 RNA	 levels	 encoding	 this	 protein.	 In	 fact,	 RT-qPCR	 results	 indicate	 that	 RNA	
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levels	encoding	PKD1	are	reduced	upon	both	12	and	24h	fasting	and	expression	is	back	

to	normal	upon	re-feeding	of	the	animals	(Figure	4,	C	and	D).		

In	 conclusion,	 it	was	 shown	 that	 fasting	 reduces	PKD1	 transcription,	which	 results	 in	

diminished	PKD1	protein	levels	and	activity.	

	

4.1.2 Expression	of	PKD1	in	adipocytes	upon	lipolytic	stimuli	

The	expression	of	PKD1	diminished	when	mice	were	exposed	to	fasting	(4.1.1).	Upon	

fasting,	 TGs	 stored	 in	 adipocytes	 are	 hydrolyzed	 in	 the	 process	 of	 lipolysis	 [14].	

Activation	of	β-adrenergic	receptors	 is	known	to	stimulate	 lipolysis	 in	adipocytes	[15,	

20].		

	

A)	 B)	

	 	
Figure	 5:	 Increased	 lipolysis	 and	 decreased	 PKD1	 expression	 in	mouse	 epiWAT	 upon	 isoproterenol	
stimulation.	EpiWAT	was	taken	from	one	mouse	and	dissected.	After	1	hour	of	starvation	in	a	medium	
containing	high	glucose	DMEM	and	0.5	%	FFA-free	BSA	explants	were	either	 transferred	 to	starvation	
medium	again	 (control;	n=15)	or	 in	medium	containing	10	μM	 isoproterenol	 (n=17).	Glycerol	 levels	 in	
medium	were	measured	after	2	hours	of	incubation	(A)	and	RT-qPCR	was	conducted	from	explants	after	
4	hours	(B).	
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Accordant	with	that,	here	isoproterenol	as	a	potent	stimulator	that	induces	lipolysis	in	

murine	 adipose	 tissue	 was	 confirmed:	 Glycerol	 levels	 were	 significantly	 elevated	

compared	to	no	stimulation	(Figure	5,	A).	It	is	of	notice	that	isoproterenol	is	an	agonist	

of	 β-adrenergic	 receptor,	 a	 GPCR,	 and	 induces	 cardiomyocyte	 hypertrophy	 in	 mice	

through	 the	 actions	 of	 PKD1	 [54].	 Therefore,	 the	 effect	 of	 isoproterenol-inducted	

lipolysis	 on	 PKD1	 expression	 in	 adipocytes	 was	 tested.	 For	 this	 purpose,	 isolated	

adipose	tissue	explants	were	used.	Interestingly,	PKD1	expression	was	decreased	when	

explant	adipose	tissue	from	regular	black	six	mice	were	stimulated	with	isoproterenol	

(Figure	5,	B),	suggesting	that	induction	of	lipolysis	might	be	required	for	suppression	of	

PKD1	expression.	This	 statistically	 significant	 reduction	corresponds	with	 the	 findings	

in	adipose	tissue	of	fasted	mice	(Figure	4,	C	and	D).		

However,	 adipose	 tissue	 is	 heterogeneous	 and	 also	 contains	 blood	 vessels,	 nerves,	

macrophages,	 and	 many	 other	 cell	 types	 [1].	 To	 focus	 on	 one	 cell	 type	 only,	

isoproterenol	experiment	was	conducted	in	vitro	with	differentiated	3T3-L1	adipocyte	

cell	line	and	expression	of	PKD1	was	measured.		

	

	
Figure	 6:	 3T3-L1	 adipocytes	 show	 decreased	 PKD1	 expression	 upon	 isoproterenol	 stimulation.	 Cells	
were	 incubated	 in	 starvation	 medium	 for	 1	 hour.	 Then	medium	 was	 exchanged	 either	 to	 starvation	
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medium	again	 (control;	 n=4)	 or	 to	medium	 containing	 10	μM	 isoproterenol	 (n=4).	 After	 4	 hours	 cells	
were	collected	and	PKD1	expression	was	measured	via	RT-qPCR.	

	

Again,	isoproterenol	treatment	resulted	in	significantly	reduced	PKD1	RNA	levels	(Figure	

6).	 These	 results	 demonstrate	 that	 isoproterenol	 not	 only	 induces	 lipolysis	 but	 also	

diminishes	PKD1	expression	in	adipocytes	ex	vivo	and	in	vitro.	

	

4.1.3 Silencing	of	ATGL	in	adipocytes	does	not	affect	PKD1	expression	

Next,	 it	 was	 analyzed	 whether	 enhanced	 lipolysis	 and	 its	 products	 can	 directly	 be	

associated	 with	 the	 decrease	 of	 PKD1	 expression	 in	 adipocytes	 (4.1.2)	 or	 whether	

isoproterenol	 is	 responsible	 for	 this	 effect	 independently	 from	 lipolysis.	 Therefore,	

3T3-L1	 adipocytes	 were	 transfected	 with	 siRNA	 targeting	 adipose	 triglyceride	 lipase	

(ATGL),	which	initiates	the	three	steps	of	triglyceride	(TG)	lipolysis	[15].	 It	was	shown	

before	that	ATGL	knockout	reduces	FFA	release	(TG	hydrolysis)	up	to	72	percent	[16].		

	

A)	

	

B)	

	

	

	

	

Figure	 7:	 Silencing	 of	 ATGL	 in	 3T3-L1	 adipocytes	 after	 transfection	 with	 siRNA.	 Mature	 cells	 were	
transfected	with	siRNA	targeting	ATGL	(adipose	triglyceride	lipase;	siATGL;	n=3)	or	non-targeting	siRNA	
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(siCtrl,	n=3)	as	a	control	and	incubated	for	24	hours.	Controls	(cont.)	are	non-treated	3T3-L1	adipocytes.	
Then	 cells	 were	 collected	 for	 RT-qPCR	 (A)	 and	Western	 blot	 (B)	 analysis	 or	medium	was	 changed	 to	
maintenance	medium	and	cells	were	collected	after	48	hours	for	Western	blot	(B).	

	

Silencing	of	ATGL	was	significantly	sufficient	on	RNA	and	Protein	level	after	24	hours	of	

transfection	 (Figure	7).	Also,	when	comparing	ATGL	protein	 levels	of	non-treated	cells	

(cont.)	 to	 adipocytes	 transfected	 with	 non-targeting	 siRNA	 (siCtrl)	 one	 can	 see	 that	

transfection	only	minimally	affects	physiological	ATGL	expression	after	24	hours	(Figure	

7,	 B,	 24	 hours).	 However,	 when	 treated	 with	 siCtrl	 for	 48	 hours,	 little	 reduction	 of	

physiological	ATGL	protein	 levels	were	observed	 (Figure	7,	 B,	 48	hours).	 Thus,	 further	

experiments	with	transfection	were	conducted	after	24	hours	and	results	were	always	

compared	to	siCtrl-transfected	cells.		

Next,	 lipolysis	 essay	 was	 performed	 with	 transfected	 adipocytes	 at	 basal	 as	 well	 as	

isoproterenol-stimulated	 status.	 The	 basal	 TG	 lipolysis	 in	 3T3-L1	 adipocytes	 is	 not	

altered	 between	 siATGL-	 and	 siCtrl-transfected	 cells	 (Figure	 8,	 A	 and	 B,	 control).	 But	

when	 stimulated	 with	 isoproterenol	 to	 enhance	 lipolysis,	 glycerol	 and	 FFA	 levels	 of	

siATGL-adipocytes	 remain	 low	 while	 values	 of	 siCrtl-treated	 adipocytes	 significantly	

increase.	 It	 is	 striking	 that	cells	 transfected	with	siATGL	have	significantly	diminished	

glycerol	and	FFA	levels	upon	isoproterenol	stimulation	compared	to	siCtrl-cells	(Figure	8,	

A	 and	 B).	 This	 is	 in	 line	 with	 findings	 of	 Scheiger	 et	 al.	 [16]	 suggesting	 that	 ATGL	

silencing	 effectively	 inhibits	 production	 of	 lipolytic	 products	 when	 stimulated	 with	

isoproterenol.		

Analysis	 of	 transcriptional	 levels	 showed	 that	 ATGL	 silencing	 does	 not	 significantly	

affect	PKD1	expression	 in	3T3-L1	adipocytes	 (Figure	8,	C,	 control).	Upon	 isoproterenol	

stimulation,	 PKD1	 expression	 is	 down	 regulated	 in	 both	 control	 and	 ATGL-silenced	

adipocytes.	Altogether,	these	results	might	 indicate	that	 isoproterenol	 independently	

from	 TG	 lipolysis	 lowers	 PKD1	 expression	 in	 3T3-L1	 adipocytes	 and	 inhibition	 of	

lipolysis	through	ATGL-silencing	has	no	significant	effect	on	PKD1	on	RNA	level.	
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A)	

	

B)	

	
C)	

	
Figure	8:	ATGL	silencing	does	not	affect	PKD1	expression	in	3T3-L1	adipocytes.	3T3-L1	adipocytes	were	
transfected	with	non-targeting	(siCtrl)	and	ATGL-targeting	(siATGL)	siRNA	for	24	hours.	Then	they	were	
exposed	 to	 starvation	 medium	 for	 2	 hours	 and	 either	 starvation	 medium	 was	 changed	 (Control,	
n=4/siRNA	type)	or	medium	with	10	μM	isoproterenol	was	added	(n=4/siRNA	type).	After	2	hours	FFA-	
and	 glycerol-levels	 were	 analyzed	 (A,	 B).	 Relative	 PKD1	 expression	 was	 measured	 after	 4	 hours	
incubation	(C).		
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4.2 PKD1	expression	is	altered	in	adipose	tissue	of	obese	mice	

PKD1	was	 identified	as	a	novel	gene	 locus	 that	 is	associated	with	BMI	 [68].	Previous	

studies	by	G.	Sumara	research	group	were	performed	to	address	the	function	of	PKD1	

in	lipid	accumulation	in	adipose	tissue	in	vivo	(1.2.2).	To	assess	the	role	of	PKD1	during	

stages	of	over-nutrition	mouse	adipose	tissue,	mice	were	fed	with	HFD	(58	kcal%	fat	

and	 sucrose)	 for	 24	 weeks	 until	 obesity	 was	 induced	 in	 these	 mice	 (Figure	 3,	 A,	

PKD1flox/flox	HFD).		

Here,	adipose	tissue	of	mice	at	the	condition	of	over-nutrition	described	above	were	

compared	 with	 adipose	 tissue	 of	 littermates	 fed	 with	 ND	 and	 effect	 on	 PKD1	

expression	in	white	adipose	tissue	was	analyzed	by	RT-qPCR.		

	

A)	

	

B)	

	

Figure	9:	EpiWAT	from	mice	fed	HFD	display	increased	PKD1	expression	in	comparison	to	ND.	Mice	of	
the	same	litter	were	fed	high	caloric	diet	(HFD;	n=7)	containing	58	kcal%	fat	and	sucrose	or	normal	chow	
diet	(normal	diet;	n=7)	for	24	weeks.	RT-qPCR	(A)	and	Western	blot	(B)	were	performed	with	epiWAT	of	
these	mice.	
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In	fact,	RNA	analysis	shows	that	PKD1	expression	is	significantly	elevated	in	response	

to	high	caloric	life-style	of	mice	(HFD),	compared	with	epiWAT	of	mice	on	ND	(Figure	9,	

A).	Hence,	results	of	RT-qPCR	indicate	that	PKD1	levels	increase	during	lipogenesis	and	

possibly	during	adipocyte	hypertrophy.		

Also,	translation	of	PKD1	on	protein	level	in	these	two	groups	was	analyzed	(Figure	9,	B).	

Although	PKD1	RNA	levels	indicate	differently,	here	total	PKD1	clearly	appears	to	be	up	

regulated	upon	ND	and	down	regulated	upon	HFD.	Consistent	with	the	pattern	of	the	

Western	 blot,	 level	 of	 the	 phosphorylated	 form	PKD1	 ser-916,	which	 represents	 the	

activated	form	of	PKD1,	appears	to	be	higher	in	mice	fed	with	ND	than	mice	on	HFD,	

too.	These	results	stand	in	contrast	to	the	findings	in	RT-qPCR.	Interestingly,	a	second	

lower	 band	 appears	 at	 approximately	 90	 kDa	 after	 incubation	 of	 Western	 blot	

membrane	with	 total	PKD1-Antibody.	 It	has	a	pattern	opposed	to	 the	upper	band	of	

115	kDa	where	 it	 is	higher	expressed	during	HFD	and	 lowers	upon	ND.	However,	the	

physiological	meaning	of	this	process	requires	further	investigation.		

	

4.3 Localization	of	PKD1	in	adipocytes		

Function	and	activity	 status	of	PKD1	 is	associated	with	 its	 localization	within	 the	cell	

[31,	 36].	 Distribution	 of	 PKD1	 within	 the	 cell	 in	 context	 of	 function	 has	 been	

investigated	 in	human	epithelial	 cells	derived	 from	cervix	 carcinoma	 (HeLa	 cells),	 rat	

mammary	adenocarcinoma	cells	(MTLn3	cells,	[47]),	pancreatic	ductal	adenocarcinoma	

cells	 (Panc89	 cells,	 [49]),	 colorectal	 cancer	 cells	 (HCT116	 and	 SW480,	 [81]),	

dopaminergic	neuronal	cells	(N27,	[52]),	mouse	B-cell	and	T-cell	 lymphoma	cells	(A20	

and	 EL4)[57],	 amongst	 others.	 Overexpressed	 GFP-tagged	 PKD1	 was	 found	 to	 be	

localized	at	TGN	and	perinuclear	in	3T3-L1	adipocytes	before	[82].		

Here,	 an	 approach	 was	 used	 to	 analyze	 distribution	 of	 PKD1	 within	 adipocytes	 in	

different	 activation	 modes	 of	 the	 kinase.	 Therefore,	 3T3-L1	 adipocytes	 were	

transfected	with	plasmids	overexpressing	PKD1	as	wild	type,	constitutively	active,	and	

as	 kinase	 that	 cannot	 be	 phosphorylated	 and	 therefore	 not	 activated	 (kinase	 dead)	

next	 to	 regular	 PKD1	 expression.	 Nucleus	 of	 cells	 was	 visualized	 in	 blue,	 protein	 of	

expressed	plasmids	in	green.		
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Figure	10:	PKD1	 localization	changes	 in	3T3-L1	adipocytes	depending	on	PKD1	activity	status.	 In	this	
immunofluorescence	 analysis,	 cells	 were	 transfected	 with	 plasmids	 containing	 flag-tagged	 control	
(empty),	wildtype	PKD1	(PKD1-WT),	constitutively	active	PKD1	(PKD1-CA),	or	kinase-dead	PKD1	(PKD1-
KD).	 After	 24	 hours,	 proteins	 were	 detected	 with	 anti-flag	 primary	 antibody	 and	 alexa	 fluor®	 568	
conjugate	 secondary	 antibody	 (green).	 Nuclei	 were	 stained	 with	 dapi	 mounting	 medium	 (blue).	
Differential	interference	contrast	(DIC)	visualizes	cell	shape.	All	three	channels	are	presented	separately	
and	as	overlay	image	(merge).	Scale	bars	represent	25	μm.	

	
Control	 adipocytes	with	 plasmids	 expressing	 nonfunctional	 protein	 depicted	 no	 flag-

tagged	 protein	 (Figure	 10,	 empty).	 Expression	 of	 wild	 type	 PKD1	 led	 to	 perinuclear	

accumulation	 with	 emphasis	 on	 one	 side	 (Figure	 10,	 PKD1-WT).	 Furthermore,	

constitutively	active	form	of	PKD1	was	located	peri-	as	well	as	 intranuclear	with	little	

fluorescent	signal	at	the	cell	periphery	(Figure	10,	PKD1-CA).	PKD1	has	been	shown	to	be	
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involved	 in	 vesicle	 fission	 at	 trans-golgi-network	 (TGN),	 an	organelle	 associated	with	

perinuclear	position,	too	[42].	Furthermore,	this	experiment	showed	that	kinase	dead	

PKD1	was	 scattered	mostly	 in	 cytoplasm	with	 irregular	 pattern	 (Figure	 10,	 PKD1-KD).	

This	 is	accordant	with	findings	in	resting	cells,	where	PKD1	is	predominantly	found	in	

the	cytosol	and	translocates	to	organelles	when	stimulated	[30,	31].	Collectively,	these	

results	display	 that	association	of	PKD1	activity	with	 translocation	of	PKD1	 in	3T3-L1	

adipocytes	can	be	found.		

Interestingly,	 different	 patterns	 of	 fat	 vacuole	 formation	 within	 the	 cell	 can	 be	

observed.	Adipocytes	transfected	with	plasmids	expressing	constitutively	active	PKD1	

depicted	 many	 big	 evenly	 shaped	 round	 fat	 vacuoles	 (Figure	 10,	 PKD1-CA),	 whereas	

PKD1	wild	type	and	control	adipocytes	showed	fat	vacuoles	in	diverse	size	and	shape	

(Figure	10,	empty	and	PKD1-WT).	 In	contrast,	adipocytes	 transfected	with	kinase	dead	

PKD1	contained	only	few	fat	droplets	(Figure	10,	PKD1-KD).	Thus,	dependency	of	PKD1	

activity	 status	 on	 fat	 content	 in	 adipocytes	 could	 be	 observed.	 This	 indicates	 that	

either	 active	 PKD1	 supports	 lipogenesis	 and	 fat	 accumulation	 in	 adipocytes	 or	 that	

PKD1s	 inactivity	 leads	 to	 an	 increased	 rate	 of	 lipolysis	 and/or	 decreased	 lipogenesis	

rate.	

	

4.4 Impact	of	PKD1	deletion	in	adipocytes	on	lipolysis	

After	 visualizing	 overexpressed	 PKD1,	 next	 the	 impact	 of	 lack	 of	 PKD1	 in	 murine	

adipocytes	on	lipolytic	behavior	of	these	cells	was	analyzed.	PKD1	was	transcriptionally	

down	regulated	upon	the	physiological	stage	of	lipolysis	during	fasting	and	in	contrast	

it	was	higher	expressed	during	free	food	consumption	(4.1)	as	well	as	during	a	high	fat	

stage	in	mice	compared	to	mice	on	chow	diet	(4.2).	Also,	the	activated	form	of	PKD1	

was	mainly	localized	in	and	around	the	nucleus	of	murine	3T3-L1	adipocytes	that	also	

contain	filled	fat	vacuoles	(4.3).	To	determine	whether	the	absence	of	PKD1	results	in	

altered	rate	of	 lipolysis	 in	mouse	adipose	tissue	G.	Sumara	research	group	generated	

PKD1adipo.Δ/Δ	mice	with	PKD1	knockout	specifically	in	white	adipose	tissue.		
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Figure	11:	Deletion	of	PKD1	 in	mouse	epiWAT	was	efficient.	PKD1	 floxed	mice	were	cross-bred	with	
mice	 expressing	 adiponectin	 promotor-driven	Cre	 recombinase	 to	 generate	mice	deficient	 of	 PKD1	 in	
adipose	 tissue.	 EpiWAT	 was	 taken	 from	mice	 expressing	 PKD1	 (PKD1flox/flox,	 n=4)	 and	 lacking	 PKD1	
expression	(PKD1adipo.	Δ/Δ,	n=4)	and	deletion	efficiency	was	analyzed	by	Western	blot.		

	

Western	blot	shows	that	deletion	of	PKD1	in	epiWAT	of	mice	was	efficient	(Figure	11).	

Furthermore,	 lipolysis	 assay	 was	 conducted	 with	 epiWAT	 of	 PKD1flox/flox	 and	

PKD1adipo.Δ/Δ	mice	fed	ND	(Figure	12).		

	

A)	 B)	

	 	
Figure	 12:	 PKD1	 deficiency	 did	 not	 affect	 induced	 lipolysis	 in	 epiWAT	 from	mice.	 PKD1flox/flox	 and	
PKD1adipo.Δ/Δ	 epiWAT	 explants	 were	 starved	 in	 medium	 for	 2	 hours.	 Explants	 were	 either	 further	
incubated	 in	 starvation	medium	 (control)	or	 stimulated	with	medium	containing	10	μM	 isoproterenol	
for	2	hours.	Lipolysis	rate	was	estimated	by	measuring	FFA	(A)	and	glycerol	(B)	levels	in	the	medium.	For	
FFA	measurements,	PKD1	flox/flox	control	n=10	and	stimulated	n=11.	For	glycerol	measurements,	PKD1	
flox/flox	 control	 n=10	and	 stimulated	n=12.	 For	 FFA	and	glycerol	measurement,	 PKD1adipo.Δ/Δ	 control	
and	stimulated	n=	13.	
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Basal	 FFA	 and	 glycerol	 levels	 did	 not	 reveal	 differences	 between	 PKD1flox/flox	 and	

PKD1adipo.Δ/Δ	 (Figure	 12,	 control).	 Upon	 isoproterenol	 stimulation	 lipolytic	 products	

increased	in	medium	of	both,	PKD1	expressing	and	PKD1	deficient	epiWAT	(Figure	12,	10	

μM	Isoproterenol).	Hence,	lipolysis	in	PKD1adipo.Δ/Δ	epiWAT	was	not	enhanced	at	basal	

rate	 nor	 when	 stimulated	 with	 isoproterenol	 compared	 to	 wild	 type	 epiWAT.	

Therefore,	 PKD1	 did	 not	 affect	 lipolysis	 or	 generation	 of	 its	 products	 in	 epigonadal	

adipose	tissue	of	mice.	

	

4.5 Browning	of	white	adipocytes	in	PKD1	deficient	adipose	tissue	

Absence	of	PKD1	in	adipose	tissue	of	PKD1adipo.Δ/Δ	mice	fed	ND	did	not	affect	lipolysis	

rate	 (4.4).	 However,	 former	 experiments	 performed	 by	 G.	 Sumara	 research	 group	

suggest	that	PKD1adipo.Δ/Δ	mice	fed	HFD	not	only	gained	less	weight	in	comparison	to	

wild	type	mice	on	HFD	(Figure	3,	A)	but	also	present	higher	energy	expenditure	(Figure	3,	

D	and	E).	Moreover,	these	mice	have	significantly	lower	FFA-levels	in	peripheral	blood	

than	wild	type	mice	(Figure	3,	F).	FFA	are	source	of	energy	from	lipolysis	during	times	of	

low	 calorie	 intake	 [14].	 It	 is	 arguable	whether	 these	 findings	 result	 from	higher	 FFA	

consumption	 in	cells	of	mice	 lacking	PKD1	in	white	adipocytes	or	from	increased	FFA	

consumption	 in	 other	 organs.	 It	 was	 shown	 before	 that	 increase	 of	 oxygen	

consumption	 and	 loss	 of	 bodyweight	 due	 to	 stimulation	 of	 A2A	 receptors	 in	murine	

white	adipose	tissue	can	be	attributed	to	elevation	of	browning	markers	in	these	cells	

[83].	 Therefore,	 another	 possible	 explanation	 for	 low	 peripheral	 FFA	 levels	 in	

association	with	diminished	PKD1	expression	was	addressed.	 In	the	next	experiment,	

thermogenic	 markers	 that	 can	 be	 found	 in	 brown	 adipose	 tissue	 were	 determined.	

Expression	 levels	 in	 murine	 white	 adipose	 tissue	 of	 PKD1flox/flox	 and	 PKD1adipo.Δ/Δ	

mice	fed	with	HFD	were	compared	using	RT-qPCR	(Figure	13).		
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Figure	13:	PKD1	deficiency	in	adipose	tissue	resulted	in	elevated	expression	of	marker	for	browning.	
RT-qPCR	analysis	of	genes	in	epigonadal	(epiWAT,	A)	and	subcutaneous	white	adipose	tissue	(subWAT,	B	
in	comparison	to	brown	adipose	tissue	(BAT,	C)	from	PKD1	flox/flox	(n=6)	and	PKD1	adipo.	Δ/Δ	(n=5)	mice	
fed	with	HFD	for	24	weeks.	
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Next	to	UCP-1,	which	is	the	determining	protein	of	brown	and	beige	adipocytes,	Cidea	

and	Slc27a,	too,	represent	marker	for	browning	or	beiging	of	white	adipose	tissue	[84,	

85].	Cideb	is	a	protein	also	expressed	in	BAT	and	associated	with	diet-induced	obesity	

[86].	Cox8b	is	a	mitochondrial	structural	gene	and	also	linked	to	browning	effect	[87,	

88].	

Measurements	of	PKD1	RNA	levels	confirmed	efficiency	of	PKD1	knockout	 in	adipose	

tissue.	 Results	were	 statistically	 significant	 for	 epiWAT,	 subWAT	 and	 BAT.	 Strikingly,	

PKD1adipo.Δ/Δ	 epiWAT	 depicted	 over	 110-fold	 higher	 expression	 of	 UCP1,	 indicating	

that	browning	or	beiging	of	white	adipocytes	and	higher	energy	dissipation	took	place	

(Figure	13,	A).	Also	browning	marker	genes	Scl27a	(approx.	5.4-fold),	Cidea	(approx.	3.8-

fold),	Cideb	(approx.	5.2-fold),	and	Cox8b	(approx.	12.7-fold)	were	elevated	in	epiWAT.	

Except	for	Cideb	all	values	are	statistically	significant.	In	subWAT	of	PKD1adipo.Δ/Δ	mice,	

UCP-1	 (approx.	 8.9-fold)	 and	 Cox8b	 (approx.	 8.3-fold)	 were	 significantly	 increased	

compared	to	subWAT	of	wild	type	mice	(Figure	13,	B).	Other	browning	marker	remained	

almost	unchanged	in	subWAT.	However,	this	data	suggests	that	browning	was	not	only	

induced	in	epiWAT	but	also	in	subWAT.	Of	note,	that	subcutaneous	fats’	predominant	

function	 is	 to	 isolate	 body	 from	 loss	 of	 temperature	 to	 environment	 and	 beige	

adipocytes	 are	 found	mainly	 in	 subcutaneous	WAT	 [2,	 5].	 In	 comparison,	 UCP1	 and	

other	 BAT-specific	 genes	 remain	 almost	 unchanged	 in	 of	 PKD1flox/flox	 and	

PKD1adipo.Δ/Δ	brown	adipose	 tissue	of	mice	 fed	with	HFD	 (Figure	13,	C).	Only	Cideb	 is	

significantly	reduced	in	BAT	lacking	PKD1.		

Thus,	selective	deletion	of	PKD1	in	mouse	adipose	tissue	induced	browning	or	beiging	

of	white	adipocytes	in	epigonadal	and	subcutaneous	adipose	tissue.	
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5 Discussion	

The	 key	 functions	 of	 PKD1	 in	 many	 diverse	 physiological	 and	 pathophysiological	

processes	 in	 vertebrates	 have	 been	 described	 and	 discussed	 before	 [30,	 36-38,	 62],	

(1.2.1).	 Studies	 focusing	 on	 metabolism	 discovered	 the	 importance	 of	 PKD1	 in	

metabolic	 processes:	 Sumara	 et	 al.	 revealed	 that	 active	 PKD1	 enhances	 insulin	

secretion	 from	pancreatic	b-cells	 and	 thus	 protects	 from	glucose	 intolerance	 [42].	 A	

genome-wide	 association	 study	 using	 significance	 SNPs,	 found	 association	 of	 PKD1	

gene-locus	with	BMI	[68].	Results	of	M.	Löffler	in	G.	Sumara	research	group	indicated	

that	 PKD1-deficiency	 specifically	 in	 adipose	 tissue	 protects	 against	 HFD-induced	

obesity	(Figure	3,	A)	and	leads	to	elevated	energy	expenditure	in	mice	(Figure	3,	D	and	E).	

However,	 the	 specific	 metabolic	 function	 of	 PKD1	 in	 adipocytes	 has	 not	 been	 fully	

understood.	Also,	physiological	mechanisms	regulating	PKD1	activity	in	adipocytes	are	

still	not	known.	Elucidating	these	was	the	aim	of	this	study.	

This	 study	 showed	 that	 PKD1	 activity	 and	 expression	 in	 white	 adipose	 tissue	 is	

dependent	 on	 the	 nutritional	 status	 of	 mice.	 Specifically,	 expression,	 protein	

abundance	 and	 activity	 of	 PKD1	 is	 down	 regulated	 during	 fasting	 (4.1.1).	 Of	 note,	

results	of	this	study	indicate	that	expression	of	PKD1	is	not	depending	on	the	induction	

of	lipolysis	and	its	products	but	only	on	b-adrenergic	stimulation	of	adipocytes	(4.1.2),	

which	 is	 a	 primary	 signal	 inducing	 fasting	 program	 in	 adipocytes	 [15,	 20].	 However,	

reduction	 of	 β-adrenergic	 stimulated	 lipolysis	 did	 not	 affect	 the	 expression	 of	 PKD1	

(4.1.3).	 Subsequently,	 this	 study	 showed	 that	 consumption	 of	 high	 caloric	 nutrients	

induced	expression	of	PKD1	RNA	but	paradoxically	did	not	induce	higher	levels	of	PKD1	

protein	in	epiWAT	of	mice	(4.2).	Furthermore,	the	results	presented	here	indicate	that	

action	of	PKD1	 in	 adipocytes	 is	 regulated	not	only	on	 the	 transcriptional	 level	but	 is	

also	 affected	 by	 its	 intracellular	 distribution.	 This	 study	 showed	 that	 activated	 PKD1	

was	 distributed	 primarily	 around	 the	 nucleus,	 while	 inactive	 PKD1	 presented	

perinuclear	 and	 nuclear	 localization	 in	 murine	 adipocytes	 (4.3).	 In	 addition	 to	

unraveling	 how	 activity	 of	 PKD1	 is	 regulated,	 the	 study	 investigated	 its	 impact	 on	

aspects	of	 adipocyte	physiology.	 Specifically,	 the	obtained	 results	 indicate	 that	PKD1	

did	 not	 regulate	b-adrenergic	 stimulated	 lipolysis	 (4.4).	 However,	 this	 study	 showed	
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that	deletion	of	PKD1	 in	white	adipocytes	 induced	expression	of	genes	 implicated	 in	

regulation	of	adaptive	thermogenesis	in	these	cells	(4.5).		

	

PKD1	expression	and	activation	is	suppressed	under	fasting	conditions	

One	goal	of	 this	 study	was	 to	 identify	 the	physiological	mechanisms	 regulating	PKD1	

expression	 and	 activity	 in	white	 adipocytes.	 This	 study	 demonstrated	 that	 fasting	 of	

mice	 significantly	 reduced	 expression	 of	 PKD1	 as	 well	 as	 phosphorylation	 and	

therefore	activation	of	PKD1	in	white	adipocytes	(Figure	4).		

Fasting	 is	 a	 physiological	 condition	 under	 which	 stimulation	 of	 the	 sympathetic	

nervous	 system	 is	 necessary	 for	 survival	 of	 living	 organisms	 to	 increase	 lipolysis.	

Catecholamines	trigger	signaling	cascades	at	β-adrenergic	receptors	 in	adipose	tissue	

in	response	to	food	deprivation	or	fasting	finally	leading	to	lipolysis	in	these	cells	[20,	

89].	 This	process	 can	be	 imitated	by	 isoproterenol	 [90].	 The	present	 study	displayed	

that	 12	 h	 of	 fasting	 of	 mice,	 as	 shown	 in	 24	 h,	 led	 to	 reduction	 of	 PKD1	 RNA	 and	

protein	 levels	 in	white	 adipose	 tissue	 (Figure	4).	Moreover,	 the	 results	 demonstrated	

that	isoproterenol	stimulation	induced	generation	of	lipolytic	products	in	murine	white	

adipose	 tissue	 as	 well	 as	 in	 3T3-L1	 adipocytes	 and	 the	 same	 stimulation	 lowered	

expression	of	PKD1	in	these	cells	(Figure	5,	Figure	6).	This	indicates	involvement	of	PKD1	

in	the	process	of	lipolysis.		

Wang	 et	 al.	 showed	 that	 the	 transcription	 factor	 peroxisome	 proliferator-acitvated	

receptor	 δ	 (PPARδ)	 plays	 a	 pivotal	 role	 in	 release	 of	 TGs	 and	β-oxidation	 in	 adipose	

tissue	 [91].	 Furthermore,	 Iglesias	 et	 al.	 identified	 that	 deletion	 of	 PPARβ/δ	 in	

pancreatic	 β-cells	 leads	 to	 an	 enhanced	 PKD1	 expression	 and	 protein	 activation,	

indicating	 regulatory	 effect	 of	 PPAR	 on	 PKD1	 [92].	 Several	 FFA	 derivatives	 act	 as	

endogenous	 agonists	 for	 PPARδ	 transcription	 and	 activity	 [93].	 Takahashi	 et	 al.	

suggested	that	fasting	could	generate	FFA	acting	as	 ligands	for	PPARδ	in	muscle	cells	

and	inducing	expression	of	genes	implicated	in	β-oxidation	[94].	Therefore,	assumably	

PKD1	 RNA	 levels	 could	 be	 decreased	 in	 fasted	 adipocytes	 because	 of	 increased	

abundance	 of	 FFAs,	which	 activate	 PPARδ	 to	 suppress	 PKD1	 transcription.	However,	

results	of	the	study	presented	here	showed	that	inhibition	of	lipolysis	and	generation	
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of	its	products	by	knocking	down	ATGL	lipase	did	not	normalize	PKD1	expression	levels	

under	basal	nor	under	isoproterenol-stimulated	condition	(Figure	8).	This	indicates	that	

isoproterenol	lowered	PKD1	expression	in	adipocytes	independently	from	TG	lipolysis.		

Interestingly,	transcriptional	PPARγ	coactivator	1α	(PGC-1α)	found	mainly	in	brown	but	

also	in	white	adipose	tissue	to	support	metabolic	gene	expression	such	as	UCP-1,	can	

also	 be	 activated	 by	 β-adrenergic	 stimulation	 [20,	 95].	 In	 this	 mechanism,	

catecholamines	 bind	 β-adrenergic	 receptors	 enhancing	 cAMP	 levels	 and	 activity	 of	

protein	kinase	A	(PKA).	On	one	the	hand,	PKA	phosphorylates	cAMP	element	binding	

protein	 (CREB)	 transcription	 factor	 to	 induce	 PGC-1	 gene	 expression.	 On	 the	 other	

hand,	 cAMP	activates	MAP	kinase	p38α	 to	phosphorylate	and	excite	PGC-1α	activity	

which	finally	coactivates	PPARγ	in	metabolic	gene	expression	[20].	Transcription	factor	

PPARγ	 plays	 a	 pivotal	 role	 in	 lipid	 and	 glucose	 metabolism	 and	 adipocyte	

differentiation	and	is	found	especially	in	adipocytes	[96].	Thus,	β-adrenergic	activation	

of	 PGC-1α	 and	 PPARγ	 could	 be	 possible	 mechanisms	 explaining	 reduced	 PKD1	

expression	 under	 isoproterenol	 stimulation	 of	 white	 adipocytes	 in	 the	 experiments	

conducted	in	this	study.	However,	Motillio	et	al.	showed	that	accumulation	of	lipolytic	

products	 in	 white	 adipocytes	 upon	 β-adrenergic	 stimulation	 lead	 to	 lower	 PKA-

mediated	expression	of	PGC-1α	and	UCP-1	mRNA	level	[97].	This	stands	in	contrast	to	

findings	presented	in	this	study,	that	ATGL	silencing	and	suppression	of	lipolysis	had	no	

impact	 on	 PKD1	 expression.	 Therefore,	 further	 analysis	 on	 FFA-dependent	 and	 –

independent	 regulation	 of	 PKD1	 expression	 is	 necessary	 to	 understand	 upstream	

mechanisms	in	this	process.	Also,	dependency	of	PKD1	gene	expression	on	PGC-1α	and	

PPARγ	in	adipocytes	needs	to	be	further	investigated.	

In	 the	 expression	 of	 PKD1,	 PKD1	 promoter	 is	 crucial	 and	 can	 be	 epigenetically	

regulated	 [98,	 99].	 Ay	 et	 al.	 revealed	 that	 inhibition	 of	 histone	 deacetylase	 (HDAC)	

increases	 PKD1	 promoter	 activity	 and	 PKD1	 expression	 [98].	 Also,	 inhibition	 of	

methylation	 of	 PKD1	 promoter	 at	 CpG-islands	 increased	 PKD1	 expression.	

Furthermore,	they	identified	PKD1	promoter	in	MN9D	dopaminergic	neuronal	cells	as	

TATA-less	 and	 GC-rich	 and	 they	 showed	 that	 transcription	 factors	 Sp3	 and	 nucelar	

factor	κB	(NF-κB)	bind	and	increase	the	promoters’	activity	[98].	NF-κB	was	shown	to	
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be	activated	upon	nutrient	excess	and	promote	metabolic	diseases	[100].	Interestingly,	

short-term	calorie	restriction	was	shown	to	inhibit	NF-κB	expression	and	DNA	binding	

activity	 in	 rat	 kindeys	 [101].	 Thus,	 fasting	of	mice	 in	 the	 experiment	presented	here	

could	 hypothetically	 lower	 NF-κB	 levels	 and	 therefore	 attenuate	 PKD1	 promoter	

activity.	 Possibly,	 reduction	of	 PKD1	 expression	 in	 fasted	mice	 of	 this	 study	 resulted	

from	downregulation	of	transcription	factor	NF-κB.		

	

The	kinase	function	of	PKD1	is	activated	when	phosphorylated	[30].	Apart	from	PKD1	

RNA	 levels,	 this	study	showed	that	phosphorylation	and	therefore	activity	of	PKD1	 is	

reduced	 in	WAT	upon	fasting	of	mice	(Figure	4,	A	and	B,	PKD1-Ser916),	a	process	that	

induces	lipolysis	and	generation	of	 lipolytic	products	[14].	Furthermore,	Western	blot	

showed	 that	 not	 only	 PKD1-Ser916	 but	 also	 total	 PKD1	 was	 downregulated	 upon	

fasting.	Therefore,	 it	 is	unclear	whether	PKD1	was	downregulated	only	as	a	 result	of	

attenuated	transcription	or	if	other	mechanisms	reduced	PKD1	activity	as	well.	

DAG	acts	as	 secondary	messenger	of	 cell	 surface	 receptors	 to	bind	and	activate	PKD	

[30].	 Thus,	 the	 question	 arises	 if	 DAGs	 derived	 from	 TG	 lipolysis	 have	 potential	 to	

activate	 PKD1,	 too.	However,	 this	 study	 showed	 that	 fasting	 did	 not	 stimulate	 PKD1	

activity	but	induce	the	opposite	(Figure	4,	A	and	B,	PKD1-Ser916).	It	has	been	discussed	

before	 that	 lipolysis	 of	 TGs	 by	ATGL	display	DAGs	with	 stereoisomeric	 (1,3-DAG	and	

2,3-DAG)	and	locational	differences	to	1,2-DAG	which	serves	as	signaling	mediator	and	

activator	of	PKC	[15].		

Furthermore,	 GPCR	 is	 activator	 of	 the	 DAG-PKC-PKD-signaling	 pathway	 [37].	 As	

mentioned	before,	WAT	is	 innervated	by	sympathetic	nervous	system,	which	induces	

lipolysis	during	fasting	through	β-adrenergic	receptor,	a	GPCR	[20].	Therefore,	it	seems	

contrary	that	fasting	induced	downregulation	of	PKD1	activity	in	adipocytes.	However,	

it	was	observed	in	cardiomyocytes	that	PKD1	is	only	activated	by	GPCR	agonists	when	

coupling	 to	 Gq	 α-subunit,	 but	 not	 by	 β-adrenergic	 receptors,	 that	 couple	 Gs	 and	 Gi	

subunits	of	GPCR	[102].		

Therefore,	regulation	of	PKD1	activity	during	fasting	is	rather	caused	by	transcriptional	

downregulation	of	PKD1	as	discussed	above.		
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In	summary,	these	results	support	the	hypothesis	that	PKD1	expression	is	dependent	

on	the	physiological	metabolic	process	of	 fasting	 in	white	adipocytes.	PKD1	RNA	and	

protein	levels	were	downregulation	in	adipose	tissue	of	fasted	mice.	PKD1	expression	

is	 possibly	 regulated	 by	 transcriptional	 mechanisms	 in	 which	 transcription	 factor	

PPARγ	 and	 coactivator	 PGC-1α	 in	 context	 of	b-adrenergic	 stimulation,	 or	 epigenetic	

mechanisms	 and	 NF-κB	 at	 PKD1	 promotor	 could	 play	 a	 role.	 However,	 the	 precise	

mechanism	behind	the	findings	and	the	role	of	isoproterenol	stimulation	in	context	of	

PKD1	expression	need	to	be	further	evaluated	and	invite	to	future	experiments.	

	

Adiposity	in	mice	is	linked	to	high	levels	of	PKD1	in	white	adipocytes		

The	second	focus	to	understand	physiological	mechanisms	regulating	PKD1	expression	

and	 activation	 in	 white	 adipocytes	 was	 put	 on	 the	 state	 of	 food	 abundance	 under	

which	 lipogenesis	 and	 adipogenesis	 take	 place	 in	 adipocytes.	 On	 the	 one	 hand,	

lipogenesis	leads	to	fat	accumulation	and	subsequently	to	hypertrophy	of	adipocytes,	

on	the	other	hand	adipogenesis	generates	hyperplasia	of	adipose	tissue,	subsequently	

leading	to	body	weight	gain	[1].		

Results	of	M.	 Löffler	 from	G.	 Sumara	 research	group	 showed	 that	mice	deficient	 for	

PKD1	 in	 adipose	 tissue	 are	 resistant	 to	 HFD-induced	 obesity	 and	 also	 display	 lower	

peripheral	FFA	levels	(Figure	3,	A	and	F).	This	study	showed	that	epiWAT	of	HFD-induced	

obese	mice	displayed	significantly	 increased	PKD1	expression	 in	RT-qPCR	(Figure	9,	A).	

Also,	re-feeding	of	fasted	mice	enhanced	PKD1	RNA	expression	and	protein	activity	in	

white	adipose	tissue	(Figure	4).	Furthermore,	in	the	in	vitro	model,	in	which	transfection	

with	plasmids	 led	 to	overexpression	of	 constitutively	 active	PKD1,	3T3-L1	adipocytes	

displayed	 a	 phenotype	with	many	 filled	 fat	 vacuoles	whereas	 adipocytes	 expressing	

non-functional	PKD1	(PKD1-KD)	showed	poorer	fat	accumulation,	indicating	that	PKD1	

supports	 fat	 accumulation	 in	 3T3-L1	 adipocytes,	 too	 (Figure	 10).	 Therefore,	 it	 seems	

likely	 that	 PKD1	 plays	 an	 important	 role	 in	 the	 process	 of	 adaptation	 to	 food	

abundance	in	adipocytes.		
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In	 the	 process	 of	 adipogenesis	 as	 well	 as	 lipogenesis	 and	 TG	 storage,	 PPARγ	 is	 the	

pivotal	transcription	factor	that	activates	gene	expression	of	proteins	involved	in	these	

processes	 [96].	 PPARγ	 is	 mainly	 found	 in	 WAT	 and	 activation	 by	 PPARγ	 agonist	

thiazolidinediones	(TZD)	was	shown	to	lower	TNF-alpha	and	peripheral	FFA	levels	due	

to	flux	into	WAT,	hence	supporting	insulin	sensitivity,	and	also	increase	WAT	mass	due	

to	adipogenesis	[103].	Regular	PPARγ	activation	led	to	high	TG	content	in	WAT,	obesity	

in	mice	as	well	as	increase	of	insulin	resistance	in	response	to	HFD	[103].	Furthermore,	

PPARγ-deficiency	protected	from	HFD-induced	obesity	due	to	decrease	 in	 lipogenesis	

so	 that	 WAT	 displayed	 decreased	 TG	 content	 [103].	 Possibly,	 PKD1	 underlies	

transcriptional	regulation	of	PPARγ	in	in	the	process	of	adipogenesis	and	lipogenesis	in	

response	to	HFD.		

	

As	mentioned	before,	study	in	neuronal	cells	showed	that	PKD1	promoter	is	activated	

by	NF-κB	among	other	transcriptional	factors	[98].	A	recent	study	revealed	that	NF-κB,	

regulated	 by	 KRas,	 binds	 to	 PKD1	 promoter	 and	 enhances	 PKD1	 expression	 in	

pancreatic	cancer	cells	[104].	NF-κB	is	a	transcriptional	factor	involved	in	the	processes	

of	inflammation	and	development	of	metabolic	diseases	[100].	It	was	shown	that	HFD	

induces	NF-κB	activity	 in	 adipose	 tissue	 [105].	 This	 suggests	 that	high	PKD1	 levels	 in	

WAT	of	mice	on	HFD	in	this	study	might	be	mediated	by	HFD-induced	activity	of	NF-κB.	

Interestingly,	it	was	also	shown	that	in	response	to	oxidative	stress	PKD1	activates	NF-

κB	through	IκB-kinase	β	(IKKβ)	of	the	IKK-complex	and	thus	promotes	cell	survival	[51].	

Therefore,	PKD1	and	NF-κB	might	 function	 in	an	amplification	 signaling	 loop	 in	HFD-

induced	WAT	expansion,	as	described	before	 in	pancreatic	cancer	 [104].	Hence,	high	

PKD1	 RNA	 levels	 in	 HFD-induced	 obese	 mice	 of	 this	 study	 might	 also	 underlie	

regulation	of	PKD1	promoter	through	NF-κB	activity.	Thus,	regulatory	role	of	NF-κB	on	

PKD1	 and	wise	 versa	 in	 obesity	 display	 an	 interesting	 target	 for	 further	 research	 in	

development	and	treatment	of	obesity	and	metabolic	diseases.	

	

Taken	 together,	 results	 of	 this	 study	 strongly	 suggest	 involvement	 of	 PKD1	 in	

regulatory	mechanisms	directing	fat	accumulation	in	WAT,	making	PKD1	an	interesting	



	 62	

target	 for	 metabolic	 disease	 therapy.	 Expression	 of	 PKD1	 in	 response	 to	 food	

abundance	possibly	 include	the	transcription	 factor	PPARγ	or	HFD-induced	activation	

of	 NF-κB.	 Their	 interaction	 in	 adipocytes	 upon	 HFD	 could	 be	 focus	 of	 future	

experiments.	 Elucidating	 mechanisms	 inhibiting	 growth	 and	 expansion	 of	 white	

adipocyte	 tissue	 may	 offer	 attractive	 possibilities	 for	 therapeutic	 prevention	 of	

development	of	obesity	and	related	diseases	in	the	future	[1].		

	

Upon	HFD,	PKD1	protein	depicts	low	molecular	weight	in	Western	Blotting	

Next	 to	PKD1	RNA	 levels,	 this	 study	examined	PKD1	protein	 activity	 in	HFD-exposed	

mice	 using	 Western	 blot	 (Figure	 9,	 B).	 Surprisingly,	 PKD1	 protein	 levels	 were	

upregulated	 in	 epiWAT	 of	mice	 fed	ND	 and	 downregulated	when	 fed	HFD,	which	 is	

contrary	 to	 RT-qPCR	 results	 of	 PKD1	 RNA	 levels	 (Figure	 9,	 A).	 However,	 total	 PKD1	

protein	detection	also	exhibited	a	band	at	approximately	90	kDa,	which	has	a	pattern	

opposed	to	the	upper	band	of	115	kDa.	The	90	kDa	band	is	stronger	in	epiWAT	of	mice	

fed	 HFD	 and	 lowers	 upon	 ND.	 This	 might	 indicate	 that	 in	 response	 to	 HFD	 PKD1	

undergoes	posttranslational	modification	or	 is	 alternatively	 transcribed	 to	produce	a	

lower	molecular	weight	form	in	WAT.	

Increased	food	intake	and	obesity	are	known	to	induce	hypertrophy	and	hyperplasia	of	

adipocytes,	 that	 can	 cause	 hypoxia	 and	 macrophage	 invasion	 [1,	 9,	 28,	 106].	

Furthermore,	 adipocyte	 hypertrophy	 due	 to	 obesity	 in	 mice	 leads	 to	 pro-apoptotic	

gene	expression	and	eventually	 to	cell	apoptosis	 in	white	adipose	tissue	through	the	

actions	of	caspase	3	amongst	others	[107,	108].	During	induction	of	apoptosis	caspase	

3	 was	 found	 to	 cleave	 PKD1	 in	 the	 C1-PH	 interdomain	 generating	 active	 PKD1	

fragments	[109,	110].	This	led	to	consideration	whether	low	molecular	weight	of	PKD1	

in	hypertrophic	adipose	tissue	of	HFD	fed	mice	could	be	due	to	cleavage	and	activation	

of	PKD1	 in	 these	 cells.	 In	neurons,	oxidative	 stress	was	 shown	 to	activate	PKD1	 in	 a	

PKC-dependent	 manner	 and	 protect	 neuronal	 cells	 from	 apoptosis	 [52].	 Hence,	 in	

neurons	 PKD1	 showed	 anti-apoptotic	 function	 [52],	 whereas	 caspase	 3,	 besides	

activating	PKD1	[110],	mediates	apoptosis	 in	hypertrophic	adipocytes	of	diet-induced	

obese	mice	 [107].	 Thus,	 hypothetically	 PKD1	 could	 have	 regulatory	 attributes,	 being	
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activated	by	and	acting	as	opponent	of	caspase	3,	and	in	this	study,	increase	of	PKD1	

at	90	kDA	in	Western	blot	obtained	from	epiWAT	of	HDF	fed	mice	could	be	explained	

by	 anti-apoptotic	 function	 of	 PKD1	 in	 hypertrophic	 white	 adipose	 tissue.	 However,	

there	are	certain	disagreements	to	consider.	First,	Asaithambi	et	al.	detected	cleaved	

product	 of	 PKD1	 at	 a	 size	 of	 approximately	 60	 kDa	 [52],	 a	 smaller	 protein	 than	 the	

protein	detect	 in	 this	study.	Vantus	et	al.	additionally	 found	a	PKD1	fragment	at	100	

kDA	after	 incubation	with	caspase-3,	 -6,	 -8	or	-11	showing	that	other	caspases	might	

also	 process	 PKD1	 [39].	 Second,	 in	 this	 study,	 PKD1-Ser916	 presenting	 the	 activated	

form	of	 PKD1,	 is	 stronger	 detected	 in	Western	 blot	 of	 adipose	 tissue	 from	mice	 fed	

with	 ND	 and	 not	 HFD	 (Figure	 9,	 B).	 And	 third,	 besides	 posttranslational	 protein	

modification,	 in	 the	 process	 of	 gene	 transcription	 alternative	 splicing	 might	 also	

produce	a	protein	of	other	molecular	weight	and	function	[111,	112].		

Therefore,	the	exact	mechanism	leading	to	the	behind	low	molecular	weight	of	PKD1	

adipocytes	upon	HFD	could	not	sufficiently	be	explained.	However,	this	result	gives	an	

impulse	 for	 research	 on	 alternative	 ways	 to	 activate	 PKD1.	 Especially,	 because	

inflammation	and	apoptosis	in	adipose	tissue	is	associated	with	metabolic	dysfunction	

[1].	

	

PKD1	activity	status,	location,	and	adipocyte	phenotype	

In	 the	 experimental	 approach	 of	 adipocyte	 transfection	 and	 staining,	 correlation	

between	 activity	 status	 of	 PKD1,	 its	 localization	 within	 3T3-L1	 adipocytes	 and	 the	

phenotype	these	cells	exhibit	was	analyzed	(Figure	10).	It	is	known	that	biological	effect	

of	 PKD1	 is	 linked	 to	 its	 intracellular	 localization	 [36-38].	 Here,	 we	 show	 that	 non-

functional	 PKD1	 (PKD1-KD)	 is	 predominantly	 found	 in	 the	 cytoplasm	 of	 3T3-L1	

adipocytes	 (Figure	 10),	 as	 it	 is	 known	 of	 inactive	 PKD1	 in	 resting	 cells	 [30,	 31].	

Interestingly,	PKD-KD	transfected	cells	contain	only	few	fat	vacuoles	compared	to	the	

control	adipocytes	 indicating	 that	an	enhanced	TG	 lipolysis	 took	place	or	 lipogenesis	

was	 suppressed.	 Moreover,	 PKD1-WT	 and	 PKD1-CA	 accumulate	 perinuclear	 and	

intranuclear	 in	 adipocytes	 where	 the	 latter	 display	 many	 round	 fat	 vacuoles,	

suggesting	that	enhanced	fat	accumulation	occurred	(Figure	10,	PKD1-WT	and	-CA).	This	
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is	 concordant	 with	 RT-qPCR	 results	 of	 HDF-induced	 obese	 mice,	 where	 PKD1	 was	

highly	 expressed	 (Figure	 9).	 Recent	 study	 in	muscle	 cells	 identified	 a	 novel	 upstream	

target	 of	 PKD1:	 It	 phosphorylates	 and	 therefore	 inactivates	 AMP-activated	 protein	

kinase	 (AMPK)	 at	 its	 a2	 subunit	 [113].	 AMPK	 is	 involved	 in	 regulation	 of	 energy	

homeostasis	in	adipocytes	and	inhibits	anabolic	processes	such	as	TG	synthesis.	When	

Acetyl-CoA	carboxylase,	a	target	of	AMPK,	is	phosphorylated	by	the	kinase,	lipogenesis	

is	inhibited	in	adipocytes	[114].	Hence,	PKD1	activity	possibly	supports	lipogenesis	and	

therefore	fat	accumulation	in	adipocytes	through	suppression	of	AMPK	as	seen	in	the	

presented	results.	This	signaling	cascade	is	an	interesting	subject	for	further	research	

in	future	experiments.	

	

Furthermore,	 activated	 PKD1	 is	 known	 to	 translocate	 to	 nucleus	 and	 also	 presents	

perinuclear	localization	[30].	PKD1	regulates	vesicle	fission	from	TGN,	which	is	located	

perinuclear	 [59].	Study	 in	pancreatic	β-cells	 showed	that	PKD1	activity	at	TGN	 led	 to	

insulin	 vesicle	 fission	 and	 insulin	 secretion	 [42].	 Other	 study	 in	 3T3-L1	 adipocytes	

suggested	that	PKD1	activity	could	partially	regulate	leptin	vesicle	trafficking	at	TGN,	as	

a	 kinase	 dead	 mutant	 resulted	 in	 significant	 decrease	 of	 leptin	 secretion	 [82].	

Therefore,	 PKD1	 assumably	 supports	 TGN	 trafficking	 to	 plasma	 membrane	 in	

adipocytes	and	possibly	contributes	to	adipocyte	endocrine	function,	too.		

In	 nucleus,	 PKD1	 is	 known	 to	 regulate	 transcription	 through	 the	 actions	 of	 class-IIa	

HDAC	[37].	 In	epithelial	cells,	active	PKD1	was	shown	to	translocate	of	PKD1	into	the	

nucleus	where	it	regulates	HDAC5	localization	and	phosphorylation	[41].	Thus,	nuclear	

accumulation	 of	 PKD-WT	 and	 PKD-CA	 indicate	 that	 activated	 PKD1	 enhances	 gene	

transcription	in	adipocytes.	

However,	besides	nucleus	no	other	cellular	organelle	was	stained	 in	this	experiment,	

so	 that	 position	 of	 PKD1	 in	 adipocytes	 cannot	 directly	 be	 related	 to	 specific	

localization.	 Also,	 in	 this	 experimental	 approach	 quantitative	 measurement	 of	 fat	

content	 in	 adipocytes	 was	 not	 performed.	 Therefore,	 a	 precise	 conclusion	 about	

phenotype	 and	 fat	 content	 in	 adipocytes	 is	 not	 possible	 but	 a	 tendency	 can	 be	

observed.	Hence,	 this	 experimental	 approach	 supports	 the	 assumptions	 drawn	 from	
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other	 experiment	 results	 in	 this	 study	 and	 gives	 reason	 for	 further	 investigation	 on	

PKD1	in	adipocytes.	In	future	experiments,	lipid	droplets	could	be	stained	using	using	

Oil-Red-O	to	visualize,	measure,	and	quantify	intracellular	lipid	droplets	in	microscope	

images.	

	

PKD1	 ablation	 in	white	 adipose	 tissue	 does	 not	 have	 an	 impact	 on	 isoproterenol-

induced	lipolysis	but	induces	browning	of	these	cells		

Focus	 of	 this	 study	 was	 not	 only	 the	 identification	 of	 physiological	 conditions	

regulating	PKD1	but	also	testing	PKD1-dependency	on	mechanisms	regulating	energy	

expenditure	in	murine	adipocytes.	In	G.	Sumara	research	group,	M.	Löffler	was	able	to	

show	 that	 PKD1adipo.Δ/Δ	 mice	 fed	 with	 HFD	 gained	 less	 weight	 than	 wild	 type	

littermates	(Figure	3,	A,	PKD1adipo.Δ/Δ	and	PKDf/f	HFD).	In	this	study,	3T3-L1	adipocytes	

over-expressing	 PKD1-KD	 displayed	 only	 little	 fat	 accumulation	 (Figure	 10).	 This	

indicates	involvement	of	PKD1	in	regulation	of	proteins	or	enzymes	promoting	energy	

expenditure.		

In	adipocytes,	 lipolysis	of	TG	is	one	of	the	main	processes	of	 lipid	energy	metabolism	

[14],	and	therefore	was	the	first	mechanism	tested	in	this	study.	However,	deletion	of	

PKD1	in	white	adipose	tissue	of	mice	fed	with	ND	had	neither	an	impact	on	generation	

of	 lipolytic	 products	 at	 basal	 status	 nor	was	 the	 lipolysis	 rate	 different	 to	wild	 type	

adipose	 tissue	 when	 stimulated	 with	 isoproterenol	 (Figure	 12).	 Hence,	 isoproterenol,	

which	is	known	to	induce	lipolysis	 in	adipocytes	[115],	acts	as	a	potent	stimulator	on	

adipose	tissue	of	mice	fed	ND	independently	from	PKD1.	This	finding	is	consistent	with	

results	of	M.	Löffler	which	revealed	no	difference	in	body	weight	gain	of	PKD1adipo.Δ/Δ	

and	PKD1flox/flox	mice	when	fed	with	ND	(Figure	3,	A,	PKD1adipo.Δ/Δ	and	PKD1f/f	ND).		

	

Furthermore,	 in	 the	 study	of	M.	Löffler	mice	 fed	with	ND	did	not	develop	obesity	 in	

comparison	 to	mice	 fed	with	HFD	 (Figure	3,	 A).	 In	 fact,	 consumption	of	 energy-dense	

food	 high	 in	 fat	 is	 the	 main	 reason	 for	 obesity	 and	 metabolic	 disease	 in	 high-	 and	

middle-income	countries,	next	to	physical	inactivity	[23].	To	balance	energy	equation,	

excessive	 calorie-intake	 needs	 to	 be	 compensated	 through	 a	 higher	 energy	
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expenditure.	Otherwise	 the	energetic	 imbalance	 leads	 to	 increased	 fat	 accumulation	

and	 adipocyte	 growth	 [1,	 23].	 In	 PKD1adipo.Δ/Δ	mice	 fed	 HFD,	 M.	 Löffler	 measured	

significantly	 lower	 FFA-blood	 levels	 as	well	 as	 increased	O2	 consumption	 and	 higher	

CO2	dissipation	than	 in	 their	wild	 type	 littermates	 (Figure	3,	C-E),	 indicating	 that	PKD1	

deletion	leads	to	higher	energy	expenditure	and	improved	metabolic	rate	in	mice	with	

high	caloric	food-intake.	

Among	others,	high	energy	expenditure	can	be	reached	by	 increased	exercise	where	

lipolysis	of	stored	TGs	takes	place,	which	here	was	not	affected	by	deletion	of	PKD1,	or	

through	energy	dissipation	in	brown	or	beige	adipocytes	through	the	actions	of	UCP-1	

[1,	 5].	 In	 the	 presented	 study,	 deletion	 of	 PKD1	 specifically	 in	 adipocytes	 led	 to	

browning	of	WAT	in	mice	fed	with	HFD	(4.5).	UCP-1,	most	important	marker	for	brown	

and	 beige	 adipocytes	 [5],	 was	 increased	 in	 epiWAT	 PKD1adipo.Δ/Δ	 over	 110-fold	

compared	 to	 PKD1flox/flox	 epiWAT,	 and	 in	 subWAT	 UCP-1	 expression	 was	 8.9-fold	

higher	 in	PKD1adipo.Δ/Δ	 than	 in	PKD1flox/flox	subWAT	 (Figure	13,	A	and	B).	Both	 results	

were	 statistically	 significant.	 Additionally,	 other	 browning	 markers	 such	 as	 Slc27a,	

Cidea,	 and	 Cox8b	 [84-87]	 were	 significantly	 elevated	 in	 PKD1adipo.Δ/Δ-epiWAT	 and	

Cox8b	in	PKD1adipo.Δ/Δ-subWAT	(Figure	13,	A	and	B).	Expression	of	those	genes	was	not	

affected	 in	 PKD1flox/flox	 and	 PKD1adipo.Δ/Δ	 BAT	 of	 mice	 fed	 with	 HFD	 (Figure	 13,	 C).	

Together,	 these	 findings	 demonstrate	 that	 deletion	 of	 PKD1	 in	 adipocytes	 led	 to	

browning	 in	 epigonadal	 and	 subcutaneous	WAT	without	 affecting	 BAT.	 Browning	 or	

beiging	 is	 a	 process	which	 is	 sufficient	 to	 increase	 energy	 expenditure	 and	 suppress	

diet-induced	body	weight	gain	[1,	5]:	Seale	et	al.	showed	that	transgenic	expression	of	

brown	adipose	tissue	determination	factor	Prdm16	in	WAT	not	only	induced	browning	

in	subWAT	by	expression	of	UCP-1	and	Cidea	among	others,	but	also	led	to	improved	

energy	expenditure	in	terms	of	oxygen	consumption	and	inhibited	weight	gain	in	mice	

fed	 HFD	 [116].	 Furthermore,	 Gnad	 et	 al.	 discussed	 that	 increase	 of	 oxygen	

consumption	 and	 loss	 of	 body	weight	 due	 to	 stimulation	 of	 A2A-receptors	 in	murine	

white	adipose	tissue	can	be	attributed	to	elevation	of	browning	markers	in	these	cells,	

too	[83].	Concordant	with	that,	expression	of	UCP-1	in	this	study	could	explain	higher	
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energy	dissipation	and	suppression	of	HFD-induced	weight	gain	in	PKD1adipo.Δ/Δ-mice	

in	the	study	of	M.	Löffler	(Figure	3,	A,	D	and	E).		

In	 this	 study,	 browning	 marker	 were	 determined	 in	WAT	 of	 mice	 fed	 HFD,	 but	 not	

when	fed	ND,	because	inhibitory	effect	of	PKD1	deletion	in	adipocytes	on	body	weight	

gain	in	M.	Löfflers	results	was	observed	under	HFD	feeding	of	(Figure	3,	A).	Therefore,	a	

separate	conclusion	to	WAT	in	mice	fed	with	ND	cannot	be	drawn	and	could	be	subject	

of	 future	 experiments.	 Also,	 browning-marker	 and	 energy	 expenditure	 could	 be	

analyzed	 in	PKD1-deficient	adipocytes	 in	an	 in	vitro	experiment,	 for	example	as	used	

before	 in	 the	 case	 of	 Prdm16	 using	 stroma	 vascular	 cells	 from	 subWAT	 of	 mice	

transduced	with	adenovirus	expressing	shRNA	targeted	to	PKD1	[116].	Not	to	 forget,	

increased	 oxygen	 consumption	 can	 be	 attributed	 to	 increased	mitochondrial	 activity	

and	to	higher	amount	of	mitochondrial	content	in	adipose	tissue	of	mice,	as	has	been	

shown	by	Wilson-Fritch	et	al.	[117].	It	would	be	interesting	to	investigate	differences	in	

respiration	 rate	 and	mitochondrial	 content	 in	 adipose	 tissue	 of	 PKD1-deficient	mice	

and	their	wildtype	littermates	in	future	experiments.	

	

Another	 consideration	 is	 possible	 in	 the	 context	 that	 ablation	 of	 PKD1	 induced	

browning	 in	 white	 adipose	 tissue	 (4.5)	 and	 findings	 of	 PKD1	 protein	 detection	 in	

epiWAT	 of	 mice	 on	 HFD	 (4.2).	 Possibly,	 PKD1	 is	 cleaved	 not	 with	 gaining	 an	 active	

status	but	with	 loss-of-function	 in	adipose	 tissue	of	mice	on	HDF	 (Figure	9,	B)	 so	 that	

excessive	calories	can	be	dissipated	through	induction	of	browning	at	a	certain	point	in	

time	rather	than	stored.	Western	blot	revealed	loss	in	activity	of	PKD1	upon	HFD,	too	

(Figure	9,	B,	PKD1-Ser916)	and	hence,	 this	 finding	supports	 the	assumption	 that	PKD1	

deletion	in	epiWAT	induces	browning	in	this	tissue	when	mice	are	fed	with	HFD.	

	

It	is	known	that	browning	of	white	adipose	tissue	can	be	induced	by	exposure	to	cold,	

β-adrenergic	stimulation,	and	PPARγ-agonist	 thiazolidinediones	(TZD)	or	mimicked	by	

chemical	 uncoupler	 2,4-dinitrophenol	 (DNP)	 [85].	 However,	 these	 methods	 are	 yet	

unlikely	to	be	used	as	therapeutic	method	to	reduce	body	weight	in	humans,	as	they	

entail	unpleasant	or	even	life-incompatible	side-effects	[85].	In	fact,	TZDs	were	already	
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used	 as	 pharmaceutical	 in	 treatment	 of	 T2DM	 but	 are	 associated	with	 body	weight	

gain	 rather	 than	 loss,	 cardiovascular	 dysfunction,	 and	 others,	 so	 that	 application	 in	

humans	was	strictly	limited	[118,	119].	Thus,	targeting	PKD1	function	in	white	adipose	

tissue	in	obese	could	offer	a	new	therapeutic	approach	to	prevent	obesity,	metabolic	

syndrome	 and	 in	 consequence	 prevent	 diseases	 in	 which	 they	 serve	 as	 major	 risk	

factor:	Cardiovascular	disease,	with	heart	attack	and	stroke	as	the	worldwide	leading	

causes	for	death,	as	well	as	T2DM	[24,	25].		
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6 Summary		

Adipocytes	 are	 specialized	 cells	 found	 in	 vertebrates	 to	 ensure	 survival	 in	 terms	 of	

adaption	to	food	deficit	and	abundance.	However,	their	dysfunction	accounts	for	the	

pathophysiology	of	metabolic	diseases	such	as	T2DM.	Preliminary	data	generated	by	

Mona	Löffler	suggested	that	PKD1	is	involved	in	adipocyte	function.	Here,	I	show	that	

PKD1	expression	and	activity	is	linked	to	lipid	metabolism	of	murine	adipocytes.	PKD1	

gene	expression	and	activity	was	reduced	in	murine	white	adipose	tissue	upon	fasting,	

a	physiological	 condition	which	 induces	 lipolysis.	 Isoproterenol-stimulated	 lipolysis	 in	

adipose	tissue	and	3T3-L1	adipocytes	reduced	PKD1	gene	expression.	Silencing	ATGL	in	

adipocytes	 inhibited	 isoproterenol-stimulated	 lipolysis,	 however,	 the	 b-adrenergic	

stimulation	of	ATGL-silenced	adipocytes	lowered	PKD1	expression	levels	as	well.		

Adipose	tissue	of	obese	mice	exhibited	high	PKD1	RNA	levels	but	paradoxically	 lower	

protein	 levels	 of	 phosphorylated	 PKD1-Ser916.	 However,	 HFD	 generated	 a	 second	

PKD1	protein	product	of	low	molecular	weight	in	mouse	adipose	tissue.		

Furthermore,	 constitutively	active	PKD1	predominantly	displayed	nuclear	 localization	

in	 3T3-L1	 adipocytes	 containing	 many	 fat	 vacuoles.	 However,	 adipocytes	

overexpressing	non-functional	PKD1	contained	fewer	 lipid	droplets	and	PKD1-KD	was	

distributed	in	cytoplasm.	

Most	 importantly,	 deficiency	 of	 PKD1	 in	mouse	 adipose	 tissue	 caused	 expression	 of	

genes	 involved	 in	adaptive	 thermogenesis	such	as	UCP-1	and	thus	generated	brown-

like	phenotype	adipocytes.		

Thus,	PKD1	is	implicated	in	adipose	tissue	function	and	presents	an	interesting	target	

for	therapeutic	approaches	in	the	prevention	of	obesity	and	associated	diseases.		

	 	



	 70	

7 Zusammenfassung	

Adipozyten	 sind	 spezialisierte	 Zellen	 der	 Wirbeltiere,	 die	 das	 Überleben	 durch	

Anpassung	 an	 Nahrungsmangel	 und	 Nahrungsüberfluss	 gewährleisten.	 Eine	

Dysfunktion	 von	 Adipozyten	 bedingt	 jedoch	 die	 Pathophysiologie	 von	

Stoffwechselerkrankungen	wie	 dem	 T2DM.	 Vorläufige	 Ergebnisse	 von	Mona	 Löfflers	

Versuchen	zeigten,	dass	PKD1	in	der	Funktion	von	Adipozyten	involviert	ist.		

Innerhalb	dieser	Arbeit	 konnte	dargestellt	werden,	 dass	 die	 Expression	und	Aktivität	

von	 PKD1	 in	 murinen	 Adipozyten	 an	 den	 Lipidmetabolismus	 gekoppelt	 ist.	 Beim	

Hungern	 von	 murinem	 weißen	 Fettgewebe,	 einem	 physiologischen	 Zustand,	 der	

Lipolyse	 induziert,	 war	 die	 Genexpression	 von	 PKD1	 reduziert.	 Isoproterenol-

stimulierte	Lipolyse	führte	ebenfalls	zu	verminderter	Expression	von	PKD1	in	murinen	

weißen	 Fettgewebe	 und	 3T3-L1	 Adipozyten.	 In	 ATGL-silenced	 Adipozyten	 war	 die	

Isoproterenol-stimulierte	 Lipolyse	 zwar	 inhibiert,	 allerdings	wurde	die	Genexpression	

von	PKD1	durch	die	b-adrenerge	Stimulation	ebenfalls	vermindert.		

Fettgewebe	von	adipösen	Mäusen	hingegen	wiesen	hohe	PKD1	RNA	Level	sowie	einen	

niedrigen	 Proteingehalt	 der	 phosphorylierten	 Form	 PKD1-Ser916	 auf.	 Fettreiche	

Ernährung	 von	 Mäusen	 generierte	 in	 Fettgewebe	 jedoch	 ein	 weiteres	 Produkt	 von	

PKD1	mit	niedrigem	Molekulargewicht	im	Western	Blot.		

Des	Weiteren	wurde	 dargestellt,	 dass	 konstitutiv	 aktives	 PKD1	 in	 3T3-L1	 Adipozyten	

vorwiegend	 nuklear	 lokalisiert	 war	 und	 diese	 Adipozyten	 einen	 hohen	 Gehalt	 von	

Fettvakuolen	aufwiesen.	Adipozyten,	die	funktionsloses	PKD1	exprimierten,	enthielten	

wenige	Lipidtropfen	und	PKD1-KD	war	im	Cytoplasma	verteilt		

Vor	 allem	 zeigte	 diese	 Arbeit,	 dass	 die	 Deletion	 von	 PKD1	 spezifisch	 in	 murinem	

Fettgewebe	 die	 Expression	 von	 Genen	 wie	 UCP-1	 verursachte,	 die	 eine	 Rolle	 in	

adaptiver	 Thermogenese	 spielen,	 und	 dadurch	 einen	 brown-like	 Phänotypen	

generierte.	

Zusammenfassend	ist	PKD1	in	die	Funktionen	von	Adipozyten	verwickelt	und	stellt	ein	

attraktives	 Ziel	 für	 therapeutische	 Ansätze	 in	 der	 Prävention	 von	 Übergewicht	 und	

damit	assoziierten	Erkankungen	dar.	
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10 Appendix	

10.1 Abbreviations	

ATGL	 Adipose	triglyceride	lipase	

AMPK	 AMP-activated	protein	kinase	

BAT	 Brown	adipose	tissue	

BMI	 Body	mass	index	

ca	 Constitutive	active	

Cont.	 Control	

CRD	 Cysteine-rich	domain	

CREB	 cAMP-response	element-binding	protein	

DAG	 Diacylglycerol	

DM	 Diabetes	mellitus	

epiWAT	 Epigonadal	white	adipose	tissue	

FCS	 Calf	bovine	serum,	iron	fortifierd	

FBS	 Fetal	bovine	serum	

FFA	 Free	fatty	acids	

GPCR	 G-protein	coupled	receptor	

HDAC	 Histone	deacetylases	

HFD	 High	fat	diet	

HSL	 Hormone-sensitive	lipase	

IDF	 International	Diabetes	Federation	

Kd	 Kinase	dead	

MGL	 Monoacylgycerol	lipase	

mRNA	 Messenger	RNA	

ND	 Normal	rodents	chow	diet	

NF-κB	 Nucelar	factor	κB	

PGC-1α	 Transcriptional	coactivator	of	PPARγ	
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PH	 Pleckstrin	homology	

PKC	 Protein	kinase	C	

PKD	 Protein	kinase	D	

PKD1	 Protein	kinase	D	1	

PLC	 Phosolipase	C	

pSer-744,		

-748,	-916	

Phosphorylated	Serine-744,	-748,	-916	

PPAR	 Peroxisome	proliferator-acitvated	receptor		

qRT-PCR	 Quantitative	real-time	polymerase	chain	reaction	

siATGL	 siRNA	targeting	ATGL	

siCtrl	 non-targeting	siRNA	

siRNA	 Small	interfering	RNA	

SNP	 Single	nucleotide	polymorphism	

subWAT	 Subcutaneous	white	adipose	tissue	

T2DM	 Type	2	diabetes	mellitus	

TG	 Triacylglyceride	

TGN	 Trans-Golgi	network	

TKR	 Tyrosine-kinase	receptor	

WAT	 White	adipose	tissue		

WHO	 World	Health	Organization	

wt	 wildtype	

UCP-1	 Uncoupling	protein-1	

	

	 	



	 iii	

10.2 Acknowledgements		

First,	 I	 would	 like	 to	 thank	 my	 supervisor	 Dr.	 Grzegorz	 Sumara	 for	 giving	 me	 the	

opportunity	to	work	on	this	study	and	conduct	experiments	in	his	laboratory	at	Rudolf-

Virchow-Zentrum	 in	Würzburg.	Dr.	Grzegorz	Sumara	supported	me	with	his	scientific	

experience,	 inspiring	 discussions,	 and	 leadership	 in	 his	 research	 group.	 The	material	

and	equipment	for	this	study	was	kindly	provided	by	G.	Sumara	research	group.		

I	thank	Mona	Löffler	for	instructing	and	supervising	me	throughout	the	scientific	work.	

M.	Löfflers	valuable	feedback	and	conversations	were	of	great	support.	Also,	 I	would	

like	 to	 thank	 the	 team	 of	 G.	 Sumara	 research	 group	 for	 constructive	 advice	 and	

restoring	 breaks	 with	 room	 for	 chats,	 jokes	 and	 laughter	 (Mona	 Löffler,	 Alexander	

Mayer,	Rabih	El-Merhabi,	Jonathan	Trujillo	Viera).	

I	 am	 very	 grateful	 to	 Prof.	 Dr.	 Antje	 Gohla	 from	 the	 Institute	 of	 Pharmacology	 in	

Würzburg	for	guiding	me	in	this	work	and	being	member	of	my	supervision	committee. 

Also,	I	thank	Prof.	Dr.	Fassnacht	for	membership	in	my	supervision	committee.	 

	

Furthermore,	 I	 would	 like	 to	 give	my	 sincere	 gratitude	 to	 Gisela	 Slotta	 and	 Hannah	

Thieron	for	valuable	suggestions	and	encouragement.	Of	course,	this	work	would	not	

have	been	possible	without	unlimited	and	kind	support	of	my	family.	

I	 thank	my	 fellows	 and	 friends	 who	 have	 encouraged	me	 throughout	 my	 academic	

studies	 and	 life.	 This	 time	 would	 not	 have	 been	 nearly	 as	 memorable	 and	

extraordinary	if	we	had	not	gone	through	it	together.		

Finally,	I	am	very	grateful	to	David	Thiemann	for	being	patient	with	me	and	supporting	

me	in	multiple	ways.	


