224 research outputs found

    Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride

    Get PDF
    We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moir\'e patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.Comment: 5 pages, 6 figures. Supplementary material is available at http://www.theorphys.science.ru.nl/people/yuan/attachments/sm_hbn.pd

    Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride

    Get PDF
    We performed calculations of electronic, optical and transport properties of graphene on hBN with realistic moir\'e patterns. The latter are produced by structural relaxation using a fully atomistic model. This relaxation turns out to be crucially important for electronic properties. We describe experimentally observed features such as additional Dirac points and the "Hofstadter butterfly" structure of energy levels in a magnetic field. We find that the electronic structure is sensitive to many-body renormalization of the local energy gap.Comment: 5 pages, 6 figures. Supplementary material is available at http://www.theorphys.science.ru.nl/people/yuan/attachments/sm_hbn.pd

    Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans

    Get PDF
    Myelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is known about the myelination of GABAergic interneurons in the cerebral cortex. Here, we report that a large fraction of myelin in mouse cerebral cortex ensheaths GABAergic interneurons, reaching up to 80% in hippocampal subregions. Moreover, we find that a very high proportion of neocortical and hippocampal parvalbumin (PV) interneurons exhibit axonal myelination. Using a combination of intracellular recordings and biocytin labeling of ex vivo human neocortex, we also confirm that axons of fast-spiking PV interneurons are extensively myelinated in the human brain. PV interneuron myelination in both mice and humans exhibits a stereotyped topography with a bias towards proximal axonal segments and relatively short internodes (∼27 μm) interspersed with branch points. Interestingly, myelin-deficient Shiverer mice exhibit an increased density and more proximal location of en passant boutons, suggesting that myelination might function in part to regu

    Re-irradiation of a second localization of idiopathic midline destructive disease in the head and neck area

    Get PDF
    Idiopathic midline destructive disease is a rare disease, characterized by a progressive ulceration and destruction of midline facial structures. We report a case with localization on the palate for which she received radiotherapy. Later she developed a second localization on the posterior pharyngeal wall for which she was re-irradiated, without severe sequels. Twice a complete regression was observed

    Genetic population structure of Anopheles gambiae in Equatorial Guinea

    Get PDF
    BACKGROUND: Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG) and Gabon. METHODS: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón) and three mainland samples (two in EG and one in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. RESULTS: High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. CONCLUSION: The observed patterns of population structure seem to be governed by the presence of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed

    Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans

    Get PDF
    Myelination, the insulating ensheathment of axons by oligodendrocytes, is thought to both optimize signal propagation and provide metabolic support. Despite the well-established physiological importance of myelination to neuronal function, relatively little is known about the myelination of GABAergic interneurons in the cerebral cortex. Here, we report that a large fraction of myelin in mouse cerebral cortex ensheaths GABAergic interneurons, reaching up to 80% in hippocampal subregions. Moreover, we find that a very high proportion of neocortical and hippocampal parvalbumin (PV) interneurons exhibit axonal myelination. Using a combination of intracellular recordings and biocytin labeling of ex vivo human neocortex, we also confirm that axons of fast-spiking PV interneurons are extensively myelinated in the human brain. PV interneuron myelination in both mice and humans exhibits a stereotyped topography with a bias towards proximal axonal segments and relatively short internodes (~27 μm) interspersed with branch points. Interestingly, myelin-deficient Shiverer mice exhibit an increased density and more proximal location of en passant boutons, suggesting that myelination might function in part to regulate synapse formation along PV interneuron axons. Taken together, fast-spiking interneuron myelination is likely to have broad implications for cerebral cortex function in health and disease

    Continuity of care for patients with de novo metastatic cancer during the COVID-19 pandemic:A population-based observational study

    Get PDF
    During the COVID-19 pandemic recommendations were made to adapt cancer care. This population-based study aimed to investigate possible differences between the treatment of patients with metastatic cancer before and during the pandemic by comparing the initial treatments in five COVID-19 periods (weeks 1–12 2020: pre-COVID-19, weeks 12–20 2020: 1st peak, weeks 21–41 2020: recovery, weeks 42–53 2020: 2nd peak, weeks 1–20 2021: prolonged 2nd peak) with reference data from 2017 to 2019. The proportion of patients receiving different treatment modalities (chemotherapy, hormonal therapy, immunotherapy or targeted therapy, radiotherapy primary tumor, resection primary tumor, resection metastases) within 6 weeks of diagnosis and the time between diagnosis and first treatment were compared by period. In total, 74,208 patients were included. Overall, patients were more likely to receive treatments in the COVID-19 periods than in previous years. This mainly holds for hormone therapy, immunotherapy or targeted therapy and resection of metastases. Lower odds were observed for resection of the primary tumor during the recovery period (OR 0.87; 95% CI 0.77–0.99) and for radiotherapy on the primary tumor during the prolonged 2nd peak (OR 0.84; 95% CI 0.72–0.98). The time from diagnosis to the start of first treatment was shorter, mainly during the 1st peak (average 5 days, p &lt;.001). These findings show that during the first 1.5 years of the COVID-19 pandemic, there were only minor changes in the initial treatment of metastatic cancer. Remarkably, time from diagnosis to first treatment was shorter. Overall, the results suggest continuity of care for patients with metastatic cancer during the pandemic.</p

    A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities.

    Get PDF
    Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this we used dose-response data from pharmacogenomic encyclopedias and represent these as a drug atlas. The drug atlas represents the relations between drug effects and allows to identify independent processes for which the tumor might be particularly vulnerable when attacked by two drugs. Our approach enables the prediction of combination-therapy which can be linked to tumor-driving mutations. By using this strategy, we can uncover potential effective drug combinations on a pan-cancer scale. Predicted synergies are provided and have been validated in glioblastoma, breast cancer, melanoma and leukemia mouse-models, resulting in therapeutic synergy in 75% of the tested models. This indicates that we can accurately predict effective drug combinations with translational value

    Uptake and subcellular distribution of radiolabeled polymersomes for radiotherapy

    Get PDF
    Polymersomes have the potential to be applied in targeted alpha radionuclide therapy, while in addition preventing release of recoiling daughter isotopes. In this study, we investigated the cellular uptake, post uptake processing and intracellular localization of polymersomes. Methods: High-content microscopy was used to validate polymersome uptake kinetics. Confocal (live cell) microscopy was used to elucidate the uptake mechanism and DNA damage induction. Intracellular distribution of polymersomes in 3-D was determined using super-resolution microscopy. Results: We found that altering polymersome size and concentration affects the initial uptake and overall uptake capacity; uptake efficiency and eventual plateau levels varied between cell lines;

    Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis

    Get PDF
    Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum
    • …
    corecore