258 research outputs found

    Lack of nAChR Activity Depresses Cochlear Maturation and Up-Regulates GABA System Components: Temporal Profiling of Gene Expression in Ξ±9 Null Mice

    Get PDF
    It has previously been shown that deletion of chrna9, the gene encoding the alpha9 nicotinic acetylcholine receptor (nAChR) subunit, results in abnormal synaptic terminal structure. Additionally, all nAChR-mediated cochlear activity is lost, as characterized by a failure of the descending efferent system to suppress cochlear responses to sound. In an effort to characterize the molecular mechanisms underlying the structural and functional consequences following loss of alpha9 subunit expression, we performed whole-transcriptome gene expression analyses on cochleae of wild type and alpha9 knockout (alpha9(-/-)) mice during postnatal days spanning critical periods of synapse formation and maturation.Data revealed that loss of alpha9 receptor subunit expression leads to an up-regulation of genes involved in synaptic transmission and ion channel activity. Unexpectedly, loss of alpha9 receptor subunit expression also resulted in an increased expression of genes encoding GABA receptor subunits and the GABA synthetic enzyme, glutamic acid decarboxylase. These data suggest the existence of a previously unrecognized association between the nicotinic cholinergic and GABAergic systems in the cochlea. Computational analyses have highlighted differential expression of several gene sets upon loss of nicotinic cholinergic activity in the cochlea. Time-series analysis of whole transcriptome patterns, represented as self-organizing maps, revealed a disparate pattern of gene expression between alpha9(-/-) and wild type cochleae at the onset of hearing (P13), with knockout samples resembling immature postnatal ages.We have taken a systems biology approach to provide insight into molecular programs influenced by the loss of nicotinic receptor-based cholinergic activity in the cochlea and to identify candidate genes that may be involved in nicotinic cholinergic synapse formation, stabilization or function within the inner ear. Additionally, our data indicate a change in the GABAergic system upon loss of alpha9 nicotinic receptor subunit within the cochlea

    On reminder effects, drop-outs and dominance: evidence from an online experiment on charitable giving

    Get PDF
    We present the results of an experiment that (a) shows the usefulness of screening out drop-outs and (b) tests whether different methods of payment and reminder intervals affect charitable giving. Following a lab session, participants could make online donations to charity for a total duration of three months. Our procedure justifying the exclusion of drop-outs consists in requiring participants to collect payments in person flexibly and as known in advance and as highlighted to them later. Our interpretation is that participants who failed to collect their positive payments under these circumstances are likely not to satisfy dominance. If we restrict the sample to subjects who did not drop out, but not otherwise, reminders significantly increase the overall amount of charitable giving. We also find that weekly reminders are no more effective than monthly reminders in increasing charitable giving, and that, in our three months duration experiment, standing orders do not increase giving relative to one-off donations

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    Evolution of Resistance to Targeted Anti-Cancer Therapies during Continuous and Pulsed Administration Strategies

    Get PDF
    The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    Carboplatin-induced gene expression changes in vitro are prognostic of survival in epithelial ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a time-course microarray experiment to define the transcriptional response to carboplatin <it>in vitro</it>, and to correlate this with clinical outcome in epithelial ovarian cancer (EOC). RNA was isolated from carboplatin and control-treated 36M2 ovarian cancer cells at several time points, followed by oligonucleotide microarray hybridization. Carboplatin induced changes in gene expression were assessed at the single gene as well as at the pathway level. Clinical validation was performed in publicly available microarray datasets using disease free and overall survival endpoints.</p> <p>Results</p> <p>Time-course and pathway analyses identified 317 genes and 40 pathways (designated time-course and pathway signatures) deregulated following carboplatin exposure. Both types of signatures were validated in two separate platinum-treated ovarian and NSCLC cell lines using published microarray data. Expression of time-course and pathway signature genes distinguished between patients with unfavorable and favorable survival in two independent ovarian cancer datasets. Among the pathways most highly induced by carboplatin <it>in vitro</it>, the NRF2, NF-kB, and cytokine and inflammatory response pathways were also found to be upregulated prior to chemotherapy exposure in poor prognosis tumors.</p> <p>Conclusion</p> <p>Dynamic assessment of gene expression following carboplatin exposure <it>in vitro </it>can identify both genes and pathways that are correlated with clinical outcome. The functional relevance of this observation for better understanding the mechanisms of drug resistance in EOC will require further evaluation.</p

    Pairwise maximum entropy models for studying large biological systems: when they can and when they can't work

    Get PDF
    One of the most critical problems we face in the study of biological systems is building accurate statistical descriptions of them. This problem has been particularly challenging because biological systems typically contain large numbers of interacting elements, which precludes the use of standard brute force approaches. Recently, though, several groups have reported that there may be an alternate strategy. The reports show that reliable statistical models can be built without knowledge of all the interactions in a system; instead, pairwise interactions can suffice. These findings, however, are based on the analysis of small subsystems. Here we ask whether the observations will generalize to systems of realistic size, that is, whether pairwise models will provide reliable descriptions of true biological systems. Our results show that, in most cases, they will not. The reason is that there is a crossover in the predictive power of pairwise models: If the size of the subsystem is below the crossover point, then the results have no predictive power for large systems. If the size is above the crossover point, the results do have predictive power. This work thus provides a general framework for determining the extent to which pairwise models can be used to predict the behavior of whole biological systems. Applied to neural data, the size of most systems studied so far is below the crossover point
    • …
    corecore