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Abstract

One of the most critical problems we face in the study of biological systems is building accurate statistical descriptions of
them. This problem has been particularly challenging because biological systems typically contain large numbers of
interacting elements, which precludes the use of standard brute force approaches. Recently, though, several groups have
reported that there may be an alternate strategy. The reports show that reliable statistical models can be built without
knowledge of all the interactions in a system; instead, pairwise interactions can suffice. These findings, however, are based
on the analysis of small subsystems. Here, we ask whether the observations will generalize to systems of realistic size, that is,
whether pairwise models will provide reliable descriptions of true biological systems. Our results show that, in most cases,
they will not. The reason is that there is a crossover in the predictive power of pairwise models: If the size of the subsystem
is below the crossover point, then the results have no predictive power for large systems. If the size is above the crossover
point, then the results may have predictive power. This work thus provides a general framework for determining the extent
to which pairwise models can be used to predict the behavior of large biological systems. Applied to neural data, the size of
most systems studied so far is below the crossover point.
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Introduction

Many fundamental questions in biology are naturally treated in

a probabilistic setting. For instance, deciphering the neural code

requires knowledge of the probability of observing patterns of

activity in response to stimuli [1]; determining which features of a

protein are important for correct folding requires knowledge of the

probability that a particular sequence of amino acids folds

naturally [2,3]; and determining the patterns of foraging of

animals and their social and individual behavior requires

knowledge of the distribution of food and species over both space

and time [4–6].

Constructing these probability distributions is, however,

hard. There are several reasons for this: i) biological systems

are composed of large numbers of elements, and so can

exhibit a huge number of configurations—in fact, an

exponentially large number, ii) the elements typically interact

with each other, making it impossible to view the system as a

collection of independent entities, and iii) because of

technological considerations, the descriptions of biological

systems have to be built from very little data. For example,

with current technology in neuroscience, we can record

simultaneously from only about 100 neurons out of approx-

imately 100 billion in the human brain. So, not only are we

faced with the problem of estimating probability distributions

in high dimensional spaces, we must do this based on a small

fraction of the neurons in the network.

Despite these apparent difficulties, recent work has suggested

that the situation may be less bleak than it seems, and that an

accurate statistical description of systems can be achieved without

having to examine all possible configurations [2,3,7–11]. One

merely has to measure the probability distribution over pairs of

elements and use those to build the full distribution. These

‘‘pairwise models’’ potentially offer a fundamental simplification,

as the number of pairs is quadratic in the number of elements, not

exponential. However, support for the efficacy of pairwise models

has, necessarily, come from relatively small subsystems—small

enough that the true probability distribution could be measured

experimentally [7–9,11]. While these studies have provided a key

first step, a critical question remains: will the results from the

analysis of these small subsystems extrapolate to large ones? That

is, if a pairwise model predicts the probability distribution for a

subset of the elements in a system, will it also predict the

probability distribution for the whole system? Here we find that,

for a biologically relevant class of systems, this question can be

answered quantitatively and, importantly, generically—indepen-

dent of many of the details of the biological system under

consideration. And the answer is, generally, ‘‘no.’’ In this paper,

we explain, both analytically and with simulations, why this is the

case.
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Results

The extrapolation problem
To gain intuition into the extrapolation problem, let us

consider a specific example: neuronal spike trains. Fig. 1A shows

a typical spike train for a small population of neurons. Although

the raw spike times provide a complete description, they are not

a useful representation, as they are too high-dimensional.

Therefore, we divide time into bins and re-represent the spike

train as 0 s and 1 s: 0 if there is no spike in a bin; 1 otherwise

(Fig. 1B) [7–9,11]. For now we assume that the bins are

independent (an assumption whose validity we discuss below,

and in more detail in the section ‘‘Is there anything wrong with

using small time bins?’’). The problem, then, is to find

ptrue rð Þ:ptrue r1,r2, . . . ,rNð Þ where ri is a binary variable

indicating no spike (ri~0) or one or more spikes (ri~1) on

neuron i. Since this, too, is a high dimensional problem (though

less so than the original spike time representation), suppose that

we instead construct a pairwise approximation to ptrue, which we

denote ppair, for a population of size N . (The pairwise model

derives its name from the fact that it has the same mean and

pairwise correlations as the true model; see Eq. (15).) Our

question, then, is: if ppair is close to ptrue for small N, what can we

say about how close the two distributions are for large N?

To answer this question quantitatively, we need a measure of

distance. The measure we use, denoted DN , is defined in Eq. (3)

below, but all we need to know about it for now is that if DN~0
then ppair~ptrue, and if DN is near one then ppair is far from ptrue.

In terms of DN , our main results are as follows. First, for small N,

in what we call the perturbative regime, DN is proportional to

N{2. In other words, as the population size increases, the

pairwise model becomes a worse and worse approximation to the

true distribution. Second, this behavior is entirely generic: for

small N, DN increases linearly, no matter what the true

distribution is. This is illustrated schematically in Fig. 2, which

shows the generic behavior of DN . The solid red part of the curve

is the perturbative regime, where DN is a linearly increasing

function of N; the dashed curves show possible behavior beyond

the perturbative regime.

These results have an important corollary: if one does an

experiment and finds that DN is increasing linearly with N, then one

has no information at all about the true distribution. The flip side of

this is more encouraging: if one can measure the true distribution for

sufficiently large N that DN saturates, as for the dashed blue line in

Fig. 2, then there is a chance that extrapolation to large N is

meaningful. The implications for the interpretation of experiments

is, therefore, that one can gain information about large N behavior

only if one can analyze data past the perturbative regime.

Under what conditions is a subsystem in the perturbative

regime? The answer turns out to be simple: the size of the system,

Figure 1. Transforming spike trains to spike count. (A) Spike
rasters. Tick marks indicate spike times; different rows correspond to
different neurons. The horizontal dashed lines are the bin boundaries.
(B) Spike count in each bin. In this example the bins are small enough
that there is at most one spike per bin, but this is not necessary—one
could use bigger bins and have larger spike counts.
doi:10.1371/journal.pcbi.1000380.g001

Author Summary

Biological systems are exceedingly complicated: They
consist of a large number of elements, those elements
interact in nonlinear and highly unpredictable ways, and
collective interactions typically play a critical role. It would
seem surprising, then, that one could build a quantitative
description of biological systems based only on knowledge
of how pairs of elements interact. Yet, that is what a
number of studies have found. Those studies, however,
focused on relatively small systems. Here, we ask the
question: Do their conclusions extend to large systems?
We show that the answer depends on the size of the
system relative to a crossover point: Below the crossover
point the results on the small system have no predictive
power for large systems; above the crossover point the
results on the small system may have predictive power.
Moreover, the crossover point can be computed analyti-
cally. This work thus provides a general framework for
determining the extent to which pairwise models can be
used to predict the behavior of large biological systems. It
also provides a useful heuristic for designing experiments:
If one is interested in understanding truly large systems via
pairwise interactions, then make sure that the system one
studies is above the crossover point.

Maximum Entropy Models for Biological Systems
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N , times the average probability of observing a spike in a bin, must

be small compared to 1. For example, if the average probability is

1/100, then a system will be in the perturbative regime if the

number of neurons is small compared to 100. This last observation

would seem to be good news: if we divide the spike trains into

sufficiently small time bins and ignore temporal correlations, then

we can model the data very well with a pairwise distribution. The

problem with this, though, is that temporal correlations can be

ignored only when time bins are large compared to the

autocorrelation time. This leads to a kind of catch-22: pairwise

models are guaranteed to work well (in the sense that they describe

spike trains in which temporal correlations are ignored) if one uses

small time bins, but small time bins is the one regime where

ignoring temporal correlations is not a valid approximation.

In the next several sections we quantify the qualitative picture

presented above: we write down an explicit expression for DN ,

explain why it increases linearly with N when N is small, and

provide additional tests, besides assessing the linearity of DN , to

determine whether or not one is in the perturbative regime.

Quantifying how well the pairwise model explains the
data

A natural measure of the distance between ppair and ptrue is the

Kullback-Leibler (KL) divergence [12], denoted DKL ptruekppair

� �
and defined as

DKL ptruekppair

� �
~
X

r

ptrue rð Þlog2

ptrue rð Þ
ppair rð Þ : ð1Þ

The KL divergence is zero if the two distributions are equal;

otherwise it is nonzero.

Although the KL divergence is a very natural measure, it is

not easy to interpret (except, of course, when it is exactly zero).

That is because a nonzero KL divergence tells us that

ppair=ptrue, but it does not give us any real handle on how

good, or bad, the pairwise model really is. To make sense of the

KL divergence, we need something to compare it to. A

reasonable reference quantity, used by a number of authors

[7–9], is the KL divergence between the true distribution and the

independent one, the latter denoted pind . The independent

distribution, as its name suggests, is a distribution in which the

variables are taken to be independent,

pind r1, . . . ,rNð Þ~P
i

pi rið Þ, ð2Þ

where pi rið Þ is the distribution of the response of the ith neuron,

ri. With this choice for a comparison, we define a normalized

distance measure—a measure of how well the pairwise model

explains the data—as

DN~
DKL ptruekppair

� �
DKL ptruekpindð Þ : ð3Þ

Note that the denominator in this expression, DKL ptruekpindð Þ, is

usually referred to as the multi-information [7,13,14].

The quantity DN lies between 0 and 1, and measures how well a

pairwise model does relative to an independent model. If it is 0, the

pairwise model is equal to the true model (ppair rð Þ~ptrue rð Þ); if it is

near 1, the pairwise model offers little improvement over the

independent model; and if it is exactly 1, the pairwise model is

equal to the independent model (ppair rð Þ~pind rð Þ), and so offers no

improvement.

How do we attach intuitive meaning to the two divergences

DKL ptruekppair

� �
and DKL ptruekpindð Þ? For the latter, we use the

fact that, as is easy to show,

DKL ptruekpindð Þ~Sind{Strue, ð4Þ

where Sind and Strue are the entropies [15,16] of pind and ptrue,

respectively, defined, as usual, to be S p½ �~{
P

r p rð Þ log2p rð Þ.
For the former, we use the definition of the KL divergence to write

DKL ptrue ppair

��� �
~{

X
r

ptrue rð Þ log2 ppair rð Þ
� �

{Strue:~SSpair{Strue:

ð5Þ

The quantity ~SSpair has the flavor of an entropy, although it is a

true entropy only when ppair is maximum entropy as well as

pairwise (see Eq. (6) below). For other pairwise distributions, all we

need to know is that ~SSpair lies between Strue and Sind . A plot

illustrating the relationship between DN , the two entropies Sind

and Strue, and the entropy-like quantity ~SSpair, is shown in Fig. 3.

Note that for pairwise maximum entropy models (or maximum

entropy models for short), DN has a particularly simple

interpretation, since in this case ~SSpair really is an entropy. Using

Smaxent to denote the pairwise entropy of a maximum entropy

model, for this case we have

DN~
Smaxent{Strue

Sind{Strue

, ð6Þ

Figure 2. Cartoon illustrating the dependence of DN on N. For
small N there is always a perturbative regime in which DN increases
linearly with N (solid red line). When N becomes large, DN may
continue increasing with N (red and black dashed lines) or it may
plateau (cyan dashed line), depending on ptrue . The observation that DN

increases linearly with N does not, therefore, provide much, if any
information about the large N behavior.
doi:10.1371/journal.pcbi.1000380.g002
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as is easy to see by inserting Eqs. (4) and (5) into (3).

This expression has been used previously by a number of authors

[7,9].

DN in the perturbative regime
The extrapolation problem discussed above is the problem of

determining DN in the large N limit. This is hard to do in general,

but there is a perturbative regime in which it is possible. The small

parameter that defines this regime is the average number of spikes

produced by the whole population of neurons in each time bin. It

is given quantitatively by Nndt where dt is the bin size and n the

average firing rate,

n:
1

N

X
i

ni, ð7Þ

with ni the firing rate of neuron i.

The first step in the perturbation expansion is to compute the

two quantities that make up DN : DKL ptruekpindð Þ and

DKL ptruekppair

� �
. As we show in the section ‘‘Perturbative

Expansion’’ (Methods), these are given by

DKL ptruekpindð Þ~D0
KL ptruekpindð ÞzO Nndtð Þ3

� �
ð8aÞ

DKL ptruekppair

� �
~D0

KL ptruekppair

� �
zO Nndtð Þ4

� �
, ð8bÞ

where

D0
KL ptruekpindð Þ~gindN N{1ð Þ ndtð Þ2 ð9aÞ

D0
KL ptruekppair

� �
~gpairN N{1ð Þ N{2ð Þ ndtð Þ3: ð9bÞ

Here and in what follows we use O Nndtð Þnð Þ to denote terms

that are proportional to Nndtð Þn in the limit Nndt?0. The

N-dependence in Eq. (9a) has been noted previously [7], although

the authors did not compute the prefactor, gind .

The prefactors gind and gpair, which are given explicitly in Eqs.

(42) and (44), depend on the low order statistics of the spike trains:

gind depends on the second order normalized correlation coefficients,

gpair depends on the second and third order normalized correlation

coefficients (the normalized correlation coefficients are defined in Eq.

(16) below), and both depend on the firing rates of the individual

cells. The details of that dependence, however, are not important for

now; what is important is that gind and gpair are independent of N
and ndt (at least on average; see next section).

Inserting Eq. (8) into Eq. (3) (into the definition of DN ) and using

Eq. (9), we arrive at our main result,

DN~D0
NzO Nndtð Þ2

� �
ð10aÞ

D0
N~

gpair

gind

N{2ð Þndt ð10bÞ

Note that in the regime Nndt%1, DN is necessarily small. This

explains why, in an analytic study of non-pairwise model in which

Nndt was small, Shlens et al. found that DN was rarely greater

than 0.1 [8].

We refer to quantities with a superscript zero as ‘‘zeroth order.’’

Note that, via Eqs. (4) and (5),we can also define zeroth order entropies,

S0
true:Sind{D0

KL ptruekpindð Þ ð11aÞ

~SS0
pair:Sind{D0

KL ptruekpindð ÞzD0
KL ptruekppair

� �
: ð11bÞ

These quantities are important primarily because differences

between them and the actual entropies indicate a breakdown of

the perturbation expansion (see in particular Fig. 4 below).

Assuming, as discussed in the next section, that gind and gpair are

approximately independent of N, n, and dt, Eq. (10) tells us that

DN scales linearly with N in the perturbative regime—the regime

in which Nndt%1. The key observation about this scaling is that it

is independent of the details of the true distribution, ptrue. This has

a very important consequence, one that has major implications for

experimental data: if one does an experiment with small ndt and

finds that DN is proportional to N{2, then the system is, with very

high probability, in the perturbative regime, and one does not

know whether ppair will remain close to ptrue as N increases. What

this means in practical terms is that if one wants to know whether a

particular pairwise model is a good one for large systems, it is

necessary to consider values of N that are significantly greater than

Nc, where

Nc:
1

ndt
: ð12Þ

We interpret Nc as the value at which there is a crossover in the

behavior of the pairwise model. Specifically, if N%Nc, the system

is in the perturbative regime and the pairwise model is not

informative about the large N behavior, whereas if N&Nc, the

Figure 3. Schematic plot of Sind (black line), ~SSpair (cyan line) and
Strue (red line). The better the pairwise model, the closer ~SSpair is to
Strue. This is reflected in the normalized distance measure, DN , which is
the distance between the red and cyan lines divided by the distance
between the red and black lines.
doi:10.1371/journal.pcbi.1000380.g003
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system is in a regime in which it may be possible to make

inferences about the behavior of the full system.

The prefactors, gind and gpair

As we show in Methods (see in particular Eqs. (42) and (44)), the

prefactors gind and gpair depend on which neurons out of the full

population are used. Consequently, these quantities fluctuate

around their true values (in the sense that different subpopulations

produce different values of gind and gpair), where ‘‘true’’ refers to

an average over all possible N-neuron sub-populations. Here we

assume that the N neurons are chosen randomly from the full

population, so any set of N neurons provides unbiased estimates of

gind and gpair. In our simulations, the fluctuations were small, as

indicated by the small error bars on the blue points in Fig. 5.

However, in general the size of the fluctuations is determined by

the range of firing rates and correlation coefficients, with larger

ranges producing larger fluctuations.

Because N does not affect the mean values of gind and gpair, it is

reasonable to think of these quantities—or at least their true

values—as being independent of N. They are also independent of

n, again modulo fluctuations. Finally, as we show in the section

‘‘Bin size and the correlation coefficients’’ (Methods), gind and gpair

are independent of dt in the limit that dt is small compared to the

width of the temporal correlations among neurons. We will assume

this limit applies here. In sum, then, to first approximation, gind

and gpair are independent of our three important quantities: N, n,

and dt. Thus, we treat them as effectively constant throughout our

analysis.

The dangers of extrapolation
Although the behavior of DN in the perturbative regime does

not tell us much about its behavior at large N, it is possible that

other quantities that can be calculated in the perturbative regime,

gind , gpair, and Sind (the last one exactly), are informative, as others

have suggested [7]. Here we show that this is not the case—they

also are uninformative.

The easiest way to relate the perturbative regime to the large N
regime is to ignore the corrections in Eqs. (8a) and (8b), extrapolate

the expressions for the zeroth order terms, and ask what their large

N behavior tells us. Generic versions of these extrapolations,

plotted on a log-log scale, are shown in Fig. 4A, along with a plot

of the independent entropy, Sind (which is necessarily linear in N).

The first thing we notice about the extrapolations is that they do

not, technically, have a large N behavior: one terminates at the

point labeled Nind , which is where D0
KL ptruekpindð Þ~Sind (and

thus, via Eq. (0a), S0
true~0; continuing the extrapolation implies

negative true zeroth order entropy); the other at the point labeled

Npair, which is where D0
KL ptruekppair

� �
~Sind (and thus, via Eq. (5)

and the fact that ~SS0
pairƒSind , S0

trueƒ0).

Despite the fact that the extrapolations end abruptly, they still

might provide information about the large N regime. For

example, Npair and/or Nind might be values of N at which

something interesting happens. To see if this is the case, in Fig. 4B

we plot the naive extrapolations of ~SSpair and Strue (that is, the

zeroth order quantities given in Eq. (11), ~SS0
pair and S0

true), on a

linear-linear plot, along with Sind . This plot contains no new

information compared to Fig. 4A, but it does elucidate the

meaning of the extrapolations. Perhaps its most striking feature is

that the naive extrapolation of Strue has a decreasing portion. As is

easy to show mathematically, entropy cannot decrease with N
(intuitively, that is because observing one additional neuron cannot

decrease the entropy of previously observed neurons). Thus, Nind ,

which occurs well beyond the point where the naive extrapolation

of Strue is decreasing, has essentially no meaning, something that

has been pointed out previously by Bethge and Berens [10]. The

other potentially important value of N is Npair. This, though,

suffers from a similar problem: when N~Npair, S0
true is negative.

How do the naively extrapolated entropies—the solid lines in

Fig. 4B—compare to the actual entropies? To answer this, in

Fig. 4B we show the true behavior of Strue and ~SSpair versus N
(dashed lines). Note that Strue is asymptotically linear in N, even

though the neurons are correlated, a fact that forces ~SSpair to be

linear in N, as it is sandwiched between Strue and Sind . (The

asymptotically linear behavior of Strue is typical, even in highly

correlated systems. Although this is not always appreciated, it is

easy to show; see the section ‘‘The behavior of the true entropy in

the large N limit,’’ Methods.) Comparing the dashed and solid

lines, we see that the naively extrapolated and true entropies, and

thus the naively extrapolated and true values of DN , have

extremely different behavior. This further suggests that there is

very little connection between the perturbative and large N
regimes.

In fact, these observations follow directly from the fact that gind

and gpair depend only on correlation coefficients up to third order

Figure 4. Cartoon showing extrapolations of the zeroth order KL divergences and entropies (see Eqs. (9) and (11)). These
extrapolations illustrate why the two natural quantities derived from them, Nind and Npair, occur beyond the point at which the extrapolation is
meaningful. (A) Extrapolations on a log-log scale. Black: Sind ; green: D0

KL ptruekpindð Þ; cyan: D0
KL ptruekppair

� �
. The red points are the data. The points

Nind and Npair label the intersections of the two extrapolations with the independent entropy, Sind . (B) Extrapolation of the entropies rather than the
KL divergences, plotted on a linear-linear scale. The data, again shown in red, is barely visible in the lower left hand corner. Black: Sind ; solid orange:
S0

true; solid maroon: ~SS0
pair. The dashed orange and maroon lines are the extrapolations of the true entropy and true pairwise ‘‘entropy’’, respectively.

doi:10.1371/journal.pcbi.1000380.g004
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(see Eqs. (42) and (44)) whereas the large N behavior depends on

correlations at all orders. Thus, since gind and gpair tell us very

little, if anything, about higher order correlations, it is not

surprising that they tell us very little about the behavior of DN in

the large N limit.

Numerical simulations
To check that our perturbation expansions, Eqs. (8–10), are

correct, and to investigate the regime in which they are valid, we

performed numerical simulations. We generated, from synthetic

data, a set of true distributions, computed the true distance

measures, DKL ptruekpindð Þ, DKL ptruekppair

� �
, and DN numerically,

and compared them to the zeroth order ones, D0
KL ptruekpindð Þ,

D0
KL ptruekppair

� �
, and D0

N . If the perturbation expansion is valid,

then the true values should be close to the zeroth order values

whenever Nndt is small. The results are shown in Fig. 5, and that

is, indeed, what we observed. Before discussing that figure, though,

we explain our procedure for constructing true distributions.

Figure 5. The N dependence of the KL divergences and the normalized distance measure, DN . Data was generated from a third order
model, as explained in the section ‘‘Generating synthetic data’’ (Methods), and fit to pairwise maximum entropy models and independent models. All
data points correspond to averages over marginalizations of the true distribution (see text for details). The red points were computed directly using
Eqs. (1), (3) and (4); the blue points are the zeroth order estimates, D0

KL ptruekpindð Þ, D0
KL ptruekppair

� �
, and D0

N , in rows 1, 2 and 3, respectively. The three
columns correspond to ndt~0:024, 0.029, and 0.037, from left to right. (A, B, C) (ndt~0:024). Predictions from the perturbative expansion are in good
agreement with the measurements up to N~10, indicating that the data is in the perturbative regime. (D, E, F) (ndt~0:029). Predictions from the
perturbative expansion are in good agreement with the measurements up to N~7, indicating that the data is only partially in the perturbative
regime. (G, H, I) (ndt~0:037). Predictions from the perturbative expansion are not in good agreement with the measurements, even for small N ,
indicating that the data is outside the perturbative regime.
doi:10.1371/journal.pcbi.1000380.g005
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The set of true distributions we used were generated from a

third order model (so named because it includes up to third order

interactions). This model has the form

ptrue r1, . . . ,rN�ð Þ

~
1

Ztrue

exp
X

i

htrue
i riz

X
ivj

Jtrue
ij rirjz

X
ivjvk

Ktrue
ijk rirjrk

" #
ð13Þ

where Ztrue is a normalization constant, chosen to ensure that the

probability distribution sums to 1, and the sums over i, j and k run

from 1 to N�. The parameters htrue
i ,Jtrue

ij and Ktrue
ijk were chosen by

sampling from distributions (see the section ‘‘Generating synthetic

data,’’ Methods), which allowed us to generate many different true

distributions. In all of our simulations we calculate the relevant

quantities directly from Eq. (13) . Consequently, we do not have to

worry about issues of finite data, as would be the case in realistic

experiments.

For a particular simulation (corresponding to a column in Fig. 5),

we generated a true distribution with N�~15, randomly chose 5

neurons, and marginalized over them. This gave us a 10-neuron

true distribution. True distributions with Nv10 were constructed

by marginalizing over additional neurons within our 10-neuron

population. To achieve a representative sample, we considered all

possible marginalizations (of which there are 10 choose N, or

10!= N! 10{Nð Þ!½ �). The results in Fig. 5 are averages over these

marginalizations.

For neural data, the most commonly used pairwise model is the

maximum entropy model. Therefore, we use that one here. To

emphasize the maximum entropy nature of this model, we replace

the label ‘‘pair’’ that we have been using so far with ‘‘maxent.’’ The

maximum entropy distribution has the form

pmaxent rð Þ~ 1

Z
exp

X
i

hiriz
X
ivj

Jijrirj

" #
: ð14Þ

Fitting this distribution requires that we choose the hi and Jij so

that the first and second moments match those of the true

distribution. Quantitatively, these conditions are

SriTmaxent~SriTtrue ð15aÞ

SrirjTmaxent~SrirjTtrue ð15bÞ

where the angle brackets, S . . .Tmaxent and S . . .Ttrue, represent

averages with respect to pmaxent and ptrue, respectively. Once we

have hi and Jij that satisfy Eq. (15), we calculate the KL

divergences, Eqs. (1) and (4), and use those to compute DN .

The results are shown in Fig. 5. The rows correspond to our

three quantities of interest: DKL ptruekpindð Þ, DKL ptruekppair

� �
, and

DN (top to bottom). The columns correspond to different values of

ndt, with the smallest ndt on the left and the largest on the right.

Red circles are the true values of these quantities; blue ones are the

zeroth order predictions from Eqs. (9) and (10b).

As suggested by our perturbation analysis, the smaller the value

of ndt, the larger the value of N for which agreement between the

true and zeroth order values is good. Our simulations corroborate

this: the left column of Fig. 5 has ndt~0:024, and agreement is

almost perfect out to N~10; the middle column has ndt~0:029,

and agreement is almost perfect out to N~7; and the right

column has ndt~0:037, and agreement is not good for any value

of N. Note that the perturbation expansion breaks down for values

of N well below NC (defined in Eq.(12)): in the middle column of

Fig. 5 it breaks down when N=Nc&0:23, and in the right column

it breaks down when N=Nc&0:15. This is not, however, especially

surprising, as the perturbation expansion is guaranteed to be valid

only if N=Nc%1.

These results validate the perturbation expansions in Eqs. (8)

and (10), and show that those expansions provide sensible

predictions—at least for some parameters. They also suggest a

natural way to assess the significance of one’s data: plot

DKL ptruekpindð Þ, DKL ptruekppair

� �
, and DN versus N, and look

for agreement with the predictions of the perturbation expansion.

If agreement is good, as in the left column of Fig. 5, then one is in

the perturbative regime, and one knows very little about the true

distribution. If, on the other hand, agreement is bad, as in the right

column, then one is out of the perturbative regime, and it may be

possible to extract meaningful information about the relationship

between the true and pairwise models.

That said, the qualifier ‘‘at least for some parameters’’ is an

important one. This is because the perturbation expansion is

essentially an expansion that depends on the normalized

correlation coefficients, and there is an underlying assumption

that they don’t exhibit pathological behavior. The kth order

normalized correlation coefficient for the distribution p rð Þ,
denoted r

p
i1 i2...ik

, is written

r
p
i1 i2...ik

~

S ri1{Sri1Tp

� �
ri2{Sri2Tp

� �
. . . rik {Srik Tp

� �
T

p

Sri1TpSri2Tp . . . Srik Tp

: ð16Þ

A potentially problematic feature of the correlation coefficients is

that the denominator is a product over mean activities. If the mean

activities are small, the denominator can become very small,

leading to very large correlation coefficients. Although our

perturbation expansion is always valid for sufficiently small time

bins (because the correlation coefficients eventually becomes

independent of bin size; see the section ‘‘Bin size and the

correlation coeffcients,’’ Methods), ‘‘sufficiently small’’ can depend

in detail on the parameters. For instance, at the maximum

population size tested (N~10) and for the true distributions that

had ndtv0:03, the absolute error of the prediction had a median

of approximately 16%. However, about 11% of the runs had

errors larger than 60%. Thus, the exact size of the small parameter

at which the perturbative expansion breaks down can depend on

the details of the true distribution.

External fields and pairwise couplings have a simple
dependence on firing rates and correlation coefficients in
the perturbative regime

Estimation of the KL divergences and DN from real data can be

hard, in the sense that it takes a large amount of data for them to

converge to their true values. In addition, as discussed above, in

the section ‘‘The prefactors gind and gpair’’, there are fluctuations in

DN associated with finite subsampling of the full population of

neurons. Those fluctuations tend to keep DN from being purely

linear, as can seen, for example, in the blue points in Fig. 5F and

5I. We therefore provide a second set of relationships that can be

used to determine whether or not a particular data set is in the

perturbative regime. These relationships are between the param-

eters of the maximum entropy model, the hi and Jij , and the mean

activity and normalized second order correlation coefficient (the

latter defined in Eq. (19) below).

Maximum Entropy Models for Biological Systems
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Since the quantity ndt plays a central role in our analysis, we

replace it with a single parameter, which we denote d,

d:ndt: ð17Þ

In terms of this parameter, we find (using the same perturbative

approach that led us to Eqs. (8–10); see the section ‘‘External

fields, pairwise couplings and moments,’’ Methods), that

hi~{log SriT{1{1
� �

zO Ndð Þ ð18aÞ

Jij~log 1zrij

� �
zO Ndð Þ ð18bÞ

where rij , the normalized second order correlation coefficient, is

defined in Eq. (16) with k~2; it is given explicitly by

rij~
SrirjT{SriTSrjT

SriTSrjT
: ð19Þ

(We don’t need a superscript on r or a subscript on the angle

brackets because the first and second moments are the same under

the true and pairwise distributions.) Equation (18a) can be

reconstructed from the low firing rate limit of analysis carried

out by Sessak and Monasson [17], as can the first three terms in

the expansion of the log in Eq. (18b).

Equation (18) tells us that the N-dependence of the hi and Jij ,

the external fields and pairwise couplings, is very weak. In Fig. 6

we confirm this through numerical simulations. Equation (18b)

also provides additional information—it gives us a functional

relationship between the pairwise couplings and the normalized

pairwise correlations function, rij . In Fig. 7A–C we plot the

pairwise couplings, Jij , versus the normalized pairwise correlation

coefficient, rij (blue dots), along with the prediction from Eq. (18b)

(black line). Consistent with our predictions, the data in Fig. 7A–C

essentially follows a line—the line given by Eq. (18b).

A relationship between the pairwise couplings and the

correlations coefficients has been sought previously, but for the

more standard Pearson correlation coefficient [7,9,11]. Our

analysis explains why it was not found. The Pearson correlation

coefficient, denoted cij , is given by

cij:
SrirjT{SriTSrjT

Sr2
i T{SriT2

� �
Sr2

j T{SrjT2
� �h i1=2

: ð20Þ

In the small SriT limit—the limit of interest—the right hand side

of Eq. (20) is approximately equal to SriTSrjT
� �1=2

rij. Because

SriTSrjT
� �1=2

depends on the external fields, hi and hj (see Eq. (18a))

and there is a one-to-one relationship between rij and Jij (Eq. (18b)),

there can’t be a one-to-one relationship between cij and Jij . We

verify the lack of a relationship in Fig. 7D and 7E, where we again

plot Jij , but this time versus the standard correlation coefficient, cij.

As predicted, the data in Fig. 7D and 7E is scattered over two

dimensions. This suggests that rij , not cij , is the natural measure of

the correlation between two neurons when they have a binary

representation, something that has also been suggested by Amari

based on information-geometric arguments [18].

Note that the lack of a simple relationship between the pairwise

couplings and the standard correlation coefficient has been a

major motivation in building maximum entropy models [7,11].

This is for good reason: if there is a simple relationship, knowing

the Jij
0s adds essentially nothing. Thus, plotting Jij versus rij (but

not cij ) is an important test of one’s data, and if the two quantities

fall on the curve predicted by Eq. (18b), the maximum entropy

model is adding very little information, if any.

As an aside, we should point out that the N-dependence is a

function of the variables used to represent the firing patterns. Here

we use 0 for no spike and 1 for one or more spikes, but another,

possibly more common, representation, derived from the Ising

model and used in a number of studies [7,9,11], is to use 21 and

+1 rather than 0 and 1. This amounts to making the change of

variables si~2ri{1. In terms of si, the maximum entropy model

has the form p rð Þ*exp
P

i h
ising
i siz

P
ivj J

ising
ij sisj

h i
where h

ising
i

and J
ising
ij are given by

h
ising
i ~

hi

2
z
X
j=i

Jij

4
ð21aÞ

J
ising
ij ~

Jij

4
: ð21bÞ

The second term on the right side of Eq. (21a) is proportional to

N{1, which means the external fields in the Ising representation

acquire a linear N-dependence that was not present in our 0/1

representation. The two studies that reported the N-dependence
of the external fields [7,9] used this representation, and, as

predicted by our analysis, the external fields in those studies had a

component that was linear in N.

Is there anything wrong with using small time bins?
An outcome of our perturbative approach is that our

normalized distance measure, DN , is linear in bin size (see Eq.

(10b)). This suggests that one could make the pairwise model look

better and better simply by making the bin size smaller and

smaller. Is there anything wrong with this? The answer is yes, for

reasons discussed above (see the the section ‘‘The extrapolation

problem’’); here we emphasize and expand on this issue, as it is an

important one for making sense of experimental results.

The problem arises because what we have been calling the

‘‘true’’ distribution is not really the true distribution of spike trains.

It is the distribution assuming independent time bins, an

assumption that becomes worse and worse as we make the bins

smaller and smaller. (We use this potentially confusing nomencla-

ture primarily because all studies of neuronal data carried out so

far have assumed temporal independence, and compared the

pairwise distribution to the temporally independent—but still

correlated across neurons—distribution [7–9,11]. In addition, the

correct name ‘‘true under the assumption of temporal indepen-

dence,’’ is unwieldy.) Here we quantify how much worse. In

particular, we show that if one uses time bins that are small

compared to the characteristic correlation time in the spike trains,

the pairwise model will not provide a good description of the data.

Essentially, we show that, when the time bins are too small, the

error one makes in ignoring temporal correlations is larger than

the error one makes in ignoring correlations across neurons.

As usual, we divide time into bins of size dt. However, because

we are dropping the independence assumption, we use rt, rather

than r, to denote the response in bin t. The full probability

distribution over all time bins is denoted 2 r1, . . . ,rM
� �

. Here M is

the number of bins; it is equal to T=dt for spike trains of length T .

If time bins are approximately independent and the distribution of

Maximum Entropy Models for Biological Systems
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rt is the same for all t (an assumption we make for convenience

only, but do not need; see the section ‘‘Extending the normalized

distance measure to the time domain,’’ Methods), we can write

2 r1, . . . ,rM
� �

&P
t

ptrue rtð Þ: ð22Þ

Furthermore, if the pairwise model is a good one, we have

ptrue rtð Þ&ppair rtð Þ: ð23Þ

Combining Eqs. (22) and Eq. (23) then gives us an especially

simple expression for the full probability distribution:

2 r1, . . . ,rM
� �

&Pt ppair rtð Þ.
The problem with small time bins lies in Eq. (22): the right

hand side is a good approximation to the true distribution when

the time bins are large compared to the spike train correlation

time, but it is a bad approximation when the time bins are small

(because adjacent time bins become highly correlated). To

quantify how bad, we compare the error one makes assuming

independence across time to the error one makes assuming

independence across neurons. The ratio of those two errors,

denoted c, is given by

c~
DKL 2 r1, . . . ,rM

� ���P
t

ppair rtð Þ
� �

MDKL p rð Þkpind rð Þð Þ : ð24Þ

It is relatively easy to compute c in the limit of small time bins

(see the section ‘‘Extending the normalized distance measure to

the time domain,’’ Methods), and we find that

c~DNz M{1ð Þz log2M

gind N{1ð Þd : ð25Þ

As expected, this reduces to our old result, DN , when there is

only one time bin (M~1). When M is larger than 1, however, the

Figure 6. The true external fields and pairwise interactions compared with the predictions of the perturbation expansion. The top
row shows the true external fields, hi , versus those predicted from Eq. (18a), and the bottom row shows the true pairwise interaction, Jij , versus those
predicted from Eq. (18b). Values of N ranging from 5 to 10 are shown, with different colors corresponding to different Ns. For each value of N , data is
shown for 45 realization of the true distribution. Insets show the N-dependence of the mean external fields (top) and mean pairwise interactions
(bottom). The three columns correspond exactly to the columns in Fig. 5. (A, B) (ndt~0:024). There is a very good match between the true and
predicted values of both external fields and pairwise interactions. (C, D) (ndt~0:029). Even though ndt has increased, the match is still good. (E, F)
(ndt~0:037). The true and predicted external fields and pairwise interactions do not match as well as the cases shown in (A, B, C, D). There is also now
a stronger N-dependence in the mean external fields compared to (A) and (B). The N-dependence of the pairwise interactions in (F) is weaker than
that of the external fields, but still notably stronger than the ones in (B) and (D). This indicates that the perturbative expansion is starting to break
down.
doi:10.1371/journal.pcbi.1000380.g006
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second term is always at least one, and for small bin size, the third

term is much larger than one. Consequently, if we use bins that are

small compared to the temporal correlation time of the spike

trains, the pairwise model will do a very bad job describing the full,

temporally correlated spike trains.

Discussion

Probability distributions over the configurations of biological

systems are extremely important quantities. However, because of

the large number of interacting elements comprising such systems,

these distributions can almost never be determined directly from

experimental data. Using parametric models to approximate the

true distribution is the only existing alternative. While such models

are promising, they are typically applied only to small subsystems,

not the full system. This raises the question: are they good models

of the full system?

We answered this question for a class of parametric models known

as pairwise models. We focused on a particular application, neuronal

spike trains, and our main result is as follows: if one were to record

spikes from multiple neurons, use sufficiently small time bins and a

sufficiently small number of cells, and assume temporal indepen-

dence, then a pairwise model will almost always succeed in matching

the true (but temporally independent) distribution—whether or not it

would match the true (but still temporally independent) distribution

for large time bins or a large number of cells. In other words,

pairwise models in the ‘‘sufficiently small’’ regime, what we refer to

as the perturbative regime, have almost no predictive value for what

will happen with large populations. This makes extrapolation from

small to large systems dangerous.

This observation is important because pairwise models, and in

particular pairwise maximum entropy models, have recently

attracted a great deal of attention: they have been applied to

salamander and guinea pig retinas [7], primate retina [8], primate

cortex [9], cultured cortical networks [7], and cat visual cortex

[11]. These studies have mainly operated close to the perturbative

regime. For example, Schneidman et al. [7] had Nndt&0:35 (for

the data set described in their Fig. 5), Tang et al. [9] had

Nndt&0:06 to 0.4 (depending on the preparation), and Yu et al.

[11] had Nndt&0:2. For these studies, then, it would be hard to

justify extrapolating to large populations.

The study by Shlens et al. [8], on the other hand, might be more

amenable to extrapolation. This is because spatially localized

visual patterns were used to stimulate retinal ganglion cells, for

which a nearest neighbor maximum entropy models provided a

good fit to their data. (Nearest neighbor means Jij is zero unless

neuron i and neuron j are adjacent.) Our analysis still applies, but,

since all but the nearest neighbor correlations are zero, many of

Figure 7. The relation between pairwise couplings and pairwise correlations. This figure shows that there is a simple relation between Jij

and rij , but not between Jij and cij . (A, C, E) Jij versus the normalized coefficients, rij (blue points), along with the predicted relationship, via Eq. (18b)
(black line). (B, D, F) Jij versus the Pearson correlation coefficients, cij , Eq. (26) (blue points). The three columns correspond exactly to the columns in
Fig. 5 from left to right; that is, ndt~0:024 for (A, B), ndt~0:029 for (C, D), and ndt~0:037 for (E, F). The prediction in the top row (black line) matches
the data well, even in the rightmost column.
doi:10.1371/journal.pcbi.1000380.g007
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the terms that make up gind and gpair vanish (see Eqs. (42) and

(44)). Consequently, the small parameter in the perturbative

expansion becomes Kndt (rather than Nndt), where K is the

number of nearest neighbors. Since K is fixed, independent of the

population size, the small parameter will not change as the

population size increases. Thus, Shlens et al.may have tapped into

the large population behavior even though they considered only a

few cells at a time in their analysis. Indeed, they have recently

extended their analysis to more than 100 neurons, and they still

find that nearest neighbor maximum entropy models provide very

good fits to the data [19].

Time bins and population size
That the pairwise model is always good if Nndt is sufficiently

small has strong implications: if we want to build a good model for

a particular N, we can simply choose a bin size that is small

compared to 1=Nn. However, one of the assumptions in all

pairwise models used on neural data is that bins at different times

are independent. This produces a tension between small time bins

and temporal independence: small time bins essentially ensure that

a pairwise model will provide a close approximation to a model

with independent bins, but they make adjacent bins highly

correlated. Large time bins come with no such assurance, but they

make adjacent bins independent. Unfortunately, this tension is

often unresolvable in large populations, in the sense that pairwise

models are assured to work only up to populations of size

1= ntcorrð Þ where tcorr is the typical correlation time. Given that n is

at least several Hz, for experimental paradigms in which the

correlation time is more than a few hundred ms, 1= ntcorrð Þ is

about one, and this assurance does not apply to even moderately

sized populations of neurons.

These observations are especially relevant for studies that use

small time bins to model spike trains driven by natural stimuli.

This is because the long correlation times inherent in natural

stimuli are passed on to the spike trains, so the assumption of

independence across time (which is required for the independence

assumption to be valid) breaks badly. Knowing that these models

are successful in describing spike trains under the independence

assumption, then, does not tell us whether they will be successful in

describing full, temporally correlated, spike trains. Note that for

studies that use stimuli with short correlation times (e.g., non-

natural stimuli such as white noise), the temporal correlations in

the spike trains are likely to be short, and using small time bins

may be perfectly valid.

The only study that has investigated the issue of temporal

correlations in maximum entropy models does indeed support the

above picture [9]: for the parameters used in that study

(Nndt~0:06 to 0.4), the pairwise maximum entropy model

provided a good fit to the data (DN was typically smaller than

0.1), but it did not do a good job modeling the temporal structure

of the spike trains.

Other systems—Protein folding
As mentioned in the Introduction, in addition to the studies on

neuronal data, studies on protein folding have also emphasized

the role of pairwise interactions [2,3]. Briefly, proteins consist of

strings of amino acids, and a major question in structural biology

is: what is the probability distribution of amino acid strings in

naturally folding proteins? One way to answer this is to

approximate the full probability distribution of naturally folding

proteins from knowledge of single-site and pairwise distributions.

One can show that there is a perturbative regime for proteins as

well. This can be readily seen using the celebrated HP protein

model [20], where a protein is composed of only two types of

amino acids. If, at each site, one amino acid type is preferred and

occurs with high probability, say 1{d with d%1, then a protein

of length shorter than 1=d will be in the perturbative regime,

and, therefore, a good match between the true distribution and

the pairwise distribution for such a protein is virtually

guaranteed.

Fortunately, the properties of real proteins generally prevent this

from happening: at the majority of sites in a protein, the

distribution of amino acids is not sharply peaked around one

amino acid. Even for those sites that are sharply peaked (the

evolutionarily-conserved sites), the probability of the most likely

amino acid, 1{d, rarely exceeds 90% [21,22]. This puts proteins

consisting of only a few amino acids out of the perturbative regime,

and puts longer proteins—the ones usually studied using pairwise

models—well out of it.

This difference is fundamental: because many of the studies that

have been carried out on neural data were in the perturbative

regime, the conclusions of those studies—specifically, the conclu-

sion that pairwise models provide accurate descriptions of large

populations of neurons—is not yet supported. This is not the case

for the protein studies, because they are not in the perturbative

regime. Thus, the evidence that pairwise models provide accurate

descriptions of protein folding remain strong and exceedingly

promising.

Open questions
In our analysis, we sidestepped two issues of practical

importance: finite sampling and alternative measures for

assessing the quality of the pairwise model. These issues are

beyond the scope of this paper, but in our view, they are natural

next steps in the analysis of pairwise models. Below we briefly

expand on them.

Finite sampling refers to the fact that in any real experiment,

one has access to only a finite amount of data, and so does not

know the true probability distribution of the spike trains. In our

analysis, however, we assumed that one did have full knowledge of

the true probability distribution. Since a good estimate of the

probability distribution is crucial for assessing whether the pairwise

model can be extrapolated to large populations, it is important to

study how such estimates are affected by finite data. Future work is

needed to address this issue, and to find ways to overcome data

limitation—for example, by finding efficient methods for removing

the finite data bias that affects information theoretic quantities

such as the Kullback-Leibler divergence.

There are always many possible ways to assess the quality of a

model. Our choice of DN was motivated by two considerations: it

is based on the Kullback-Leibler divergence, which is a standard

measure of ‘‘distance’’ between probability distributions, and it is a

widely used measure in the field [7–10]. It suffers, however, from a

number of shortcomings. In particular, DN can be small even

when the pairwise model assigns very different probabilities to

many of the configurations of the system. It would, therefore, be

important to study the quality of pairwise models using other

measures.

Methods

The behavior of the true entropy in the large N limit
To understand how the true entropy behaves in the large N

limit, it is useful to express the difference of the entropies as a

mutual information. Using SN to denote the true entropy of N
neurons and I 1; Nð Þ to denote the mutual information between

one neuron and the other N neurons in a population of size Nz1,

we have
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SNzS1ð Þ{SNz1~I 1; Nð Þ[SNz1{SN~S1{I 1; Nð Þ: ð26Þ

If knowing the activity of N neurons does not fully constrain the

firing of neuron Nz1, then the single neuron entropy, S1, will

exceed the mutual information, I 1; Nð Þ, and the entropy will be

an increasing function of N. For the entropy to be linear in N , all

we need is that the mutual information saturates with N . Because

of synaptic noise, this is a reasonable assumption for networks of

neurons: even if we observed all the spikes from all the neurons,

there would still be residual noise associated with synaptic failures,

jitter in release time, variability in the amount of neurotransmitter

released, stochastic channel dynamics, etc. Consequently, in the

large N limit, we may replace I 1; Nð Þ by its average, denoted

SI 1;?ð ÞT. Also replacing S1 by its average, denoted SS1T, we see

that for large N, the difference between SNz1 and SN approaches

a constant. Specifically,

SN~N SS1T{SI 1;?ð ÞT½ �zcorrections, ð27Þ

where this expression is valid in the large N limit and the

corrections are sublinear in N .

Perturbative expansion
Our main quantitative result, given in Eqs. (8–10), is that the

KL divergence between the true distribution and both the

independent and pairwise distributions can be computed pertur-

batively as an expansion in powers of Nd in the limit Nd%1. Here

we carry out this expansion, and derive explicit expressions for the

quantities gind and gpair.

To simplify our notation, here we use p rð Þ for the true

distribution. The critical step in computing the KL divergences

perturbatively is to use the Sarmanov-Lancaster expansion [23–

28] for p rð Þ,

p rð Þ~pind rð Þ 1zjp rð Þ
� �

ð28Þ

where

pind rð Þ~ exp
P

iH
p
i ri

Pi 1zexp Hp
i ri

� �� � ð29aÞ

jp rð Þ:
X
ivj

J p
ijdridrjz

X
ivjvk

Kp
ijkdridrjdrkz . . . ð29bÞ

dri~ri{ri ð29cÞ

ri: 1zexp {Hp
i

� �� �{1
: ð29dÞ

This expansion has a number of important, but not immediately

obvious, properties. First, as can be shown by a direct calculation,

SriTp~SriTind~ri ð30Þ

where the subscripts p and ind indicate an average with respect to

p rð Þ and pind rð Þ, respectively. This has an immediate corollary,

SdriTind~0:

This last relationship is important, because it tells us that if a

product of dr0s contains any terms linear in one of the dri, the

whole product averages to zero under the independent distribu-

tion. This can be used to show that

Sjp rð ÞTind~0 ð31Þ

from which it follows that

X
r

p rð Þ~S 1zjp rð Þ
� �

Tind~1:

Thus, p rð Þ is properly normalized. Finally, a slightly more

involved calculations provides us with a relationship between the

parameters of the model and the moments: for i=j=k,

SdridrjTp~ri 1{rið Þrj 1{rj

� �
J p

ij ð32aÞ

SdridrjdrkTp~ri 1{rið Þrj 1{rj

� �
rk 1{rkð ÞKp

ijk: ð32bÞ

Virtually identical expressions hold for higher order moments. It

is this last set of relationships that make the Sarmanov-Lancaster

expansion so useful.

Note that Eqs. (32a) and (32b), along with the expression for the

normalized correlation coefficients given in Eq. (16), imply that

1{rið Þ 1{rj

� �
J p

ij~rp
ij ð33aÞ

1{rið Þ 1{rj

� �
1{rkð ÞKp

ijk~r
p
ijk: ð33bÞ

These identities will be extremely useful for simplifying

expressions later on.

Because the moments are so closely related to the parameters of

the distribution, moment matching is especially convenient: to

construct a distribution whose moments match those of p rð Þ up to

some order, one simply needs to ensure that the parameters of that

distribution, Hi, J ij , Kijk, etc., are identical to those of the true

distributions up to the order of interest. In particular, let us write

down a new distribution, q rð Þ,

q rð Þ~pind rð Þ 1zjq rð Þ
� �

ð34aÞ

jq rð Þ~
X
ivj

J q
ijdridrjz

X
ivjvk

Kq
ijkdridrjdrkz . . . : ð34bÞ

We can recover the independent distribution by letting

jq rð Þ~0, and we can recover the pairwise distribution by letting

J q
ij~J

p
ij . This allows us to compute DKL pkqð Þ in the general

case, and then either set jq to zero or set J q
ij to J p

ij .

Expressions analogous to those in Eqs. (31–33) exist for averages

with respect to q rð Þ; the only difference is that p is replaced by q.
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The KL divergence in the Sarmanov-Lancaster
representation

Using Eqs. (28) and (34a) and a small amount of algebra, the KL

divergence between p rð Þ and q rð Þ may be written

DKL pkqð Þ~ 1

ln 2
Sf jp rð Þ,jq rð Þ
� �

Tind ð35Þ

where

f x,yð Þ: 1zxð Þ ln 1zxð Þ{ln 1zyð Þ½ �{ x{yð Þ: ð36Þ

To derive Eq. (35), we used the fact that SjpTind~SjqTind~0
(see Eq. (31)). The extra term x{yð Þ was included to ensure that

f x,yð Þ and its first derivatives vanish at x~y, something that

greatly simplifies our analysis later on.

Our approach is to Taylor expand the right hand side of Eq.

(35) around jp~jq~0, compute each term, and then sum the

whole series (we do not assume that either jp or jq is small).

Using anm to denote the coefficients of the Taylor series, we

have

DKL pkqð Þ~ 1

ln 2

X
mn

amnSjp rð Þmjq rð ÞnT
ind
: ð37Þ

Note that because f x,yð Þ and its first derivatives vanish at

x~y~0, all terms in this sum have mzn§2.

Because both jp and jq are themselves sums, an exact

calculation of the terms in Eq. (37) would be difficult. However,

as we show below, in the section ‘‘Averages of powers of jp and jq’’

(see in particular Eqs. (52) and (54)), they can be computed as

perturbation expansions in powers of Nd, and the result is

Sjp rð Þmjq rð ÞnTind~

1

ln 2

X
ivj

rirj r
p
ij

� �m

r
q
ij

� �n

zrj {rir
p
ij

� �m

{rir
q
ij

� �n

zri {rjr
p
ij

� �m

{rjr
q
ij

� �n

z
1

ln 2

X
ivjvk

rirjrk ~rrp
ijk

� �m

~rrq
ijk

� �n

zO Ndð Þ4
� �

ð38Þ

where ~rrp
ijk and ~rrq

ijk are given by

~rrx
ijk:rx

ijkzrx
ijzrx

ikzrx
jk~

SrirjrkTx{rirjrk

rirjrk

, ð39Þ

x~p,q. The last equality in Eq. (39) follows from a small amount

of algebra and the definition of the correlation coefficients given in

Eq. (16). Equation (38) is valid only when mzn§2, which is the

case of interest to us (since the Taylor expansion of f x,yð Þ has only

terms with mzn§2).

The important point about Eq. (38) is that the m and n
dependence follows that of the original Taylor expansion. Thus,

when we insert this equation back into Eq. (37), we recover our

original function—all we have to do is interchange the sums. For

example, consider inserting the first term in Eq. (38) into Eq. (37),

X
m,n

amn

X
ivj

rirj rp
ij

� �m

rq
ij

� �n

~
X
ivj

rirj

X
m,n

amn rp
ij

� �m

rq
ij

� �n

~
X
ivj

rirj f r
p
ij ,r

q
ij

� �
:

Performing the same set of manipulations on all of Eq. (38) leads to

DKL p qkð Þ~ 1

ln 2

X
ivj

rirjf rp
ij,r

q
ij

� �
zrjf {rir

p
ij,{rir

q
ij

� �

zrif {rjr
p
ij,{rjr

q
ij

� �

z
1

ln 2

X
ivjvk

rirjrkf ~rrp
ijk,~rrq

ijk

� �
zO Ndð Þ4

� �
:

ð40Þ

This expression is true in general (except for some technical

considerations; see the section ‘‘Averages of powers of jp and jq’’);

to restrict it to the KL divergences of interest we set p rð Þ to ptrue rð Þ
and q rð Þ to either pind rð Þ or ppair rð Þ. In the first case (q rð Þ set to

pind rð Þ), jq rð Þ~0, which implies that J q
ij~0, and thus rq

ij~0.

Because f x,yð Þ has a quadratic minimum at x~y~0, when

r
q
ij~0, the second two terms on the right hand side of Eq. (40) are

O N2d3
� �

. We thus have, to lowest nonvanishing order in Nd,

DKL ptruekpindð Þ~ 1

ln 2

X
ivj

rirj f r
p
ij ,0

� �
zO Ndð Þ3

� �
, ð41Þ

with the O Ndð Þ3
� �

correction coming from the last sum in Eq.

(40). Defining

gind:
1

N N{1ð Þln 2ð Þ
X
ivj

ri

d

rj

d
f r

p
ij ,0

� �
, ð42Þ

where, recall d~ndt, and inserting Eq. (42) into Eq. (41), we

recover Eq. (8a).

In the second case (q rð Þ set to ppair rð Þ), the first and second

moments of ppair rð Þ and ptrue rð Þ are equal. This implies, using Eq.

(32), that J q
ij~J

p
ij , and thus rp

ij~rq
ij . Because f x,xð Þ~0 (see Eq.

(36)), the first three terms on the right hand side of Eq. (40)—those

involving i and j but not k—vanish. The next order term does not

vanish, and yields

DKL ptruekppair

� �
~

1

ln 2

X
ivjvk

rirjrkf ~rrp
ijk,~rrq

ijk

� �
zO Ndð Þ4

� �
: ð43Þ

Defining

gpair:
1

N N{1ð Þ N{2ð Þln 2ð Þ
X

ivjvk

ri

d

rj

d

rk

d
f ~rrp

ijk,~rrq
ijk

� �
, ð44Þ

and inserting this expression into Eq. (43), we recover Eq. (8b).

External fields, pairwise couplings and moments
In this section we derive, to leading order in Nd, expressions

relating the external fields and pairwise couplings of the maximum
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entropy model, hi and Jij , to the first and second moments; these

are the expressions reported in Eq. (18). The calculation proceeds

along the same lines as in the previous section. There is, though,

one extra step associated with the fact that the quadratic term in

the maximum entropy distribution given in Eq. (14) is proportional

to rirj , not dridrj . However, to lowest order in Nd, this doesn’t

matter. That’s because

X
ivj

Jijrirj~
X
ivj

Jijdridrjzri

X
j=i

Jijrjzconstants:

where ri is defined as in Eq. (29d) except with Hp
i replaced by

hi, and we used the fact that Jij~Jji. The second term

introduces a correction to the external fields, hi. However, the

correction is O Ndð Þ, so we drop it. We should keep in mind,

though, that our final expression for hi will have corrections of

this order.

Using Eq. (14), but with ri replaced by dri where it appears with

Jij , we may write (after a small amount of algebra)

pmaxent rð Þ~pind rð Þ 1zj2 rð Þzy j2 rð Þð Þ
1zSj2 rð Þzy j2 rð Þð ÞTind

ð45Þ

where pind rð Þ is the same as the function pind rð Þ defined in Eq.

(29a) except thatHp
i is replaced by hi, the subscript ‘‘ind’’ indicates,

as usual, an average with respect to pind rð Þ, and the two functions

j2 rð Þ and y xð Þ are defined by

j2 rð Þ:
X
ivj

Jijdridrj ð46Þ

and

y xð Þ:ex{1{x: ð47Þ

Given this setup, we can use Eqs. (55) and (56) below to

compute the moments under the maximum entropy model.

That’s because both y xð Þ and its first derivative vanish at x~0,

which are the two conditions required for these equations to be

valid. Using also the fact that SdriTind~0, Eqs. (55) and (56)

imply that

Sj2 rð Þzy j2 rð Þð ÞTind~
X
ivj

rirjy Jij

� �
zO Ndð Þ3

� �
ð48aÞ

SriTmaxent~ 1zexp {hið Þð Þ{1
zO Nd2

� �
ð48bÞ

SdridrjTmaxent~rirj y Jij

� �
zJij

� �
zO Nd3

� �
ð48cÞ

where the first term in Eq. (48b) came from Eq. (29d) with Hp
i

replaced by hi, the term ‘‘zJij ’’ in Eq. (48c) came from

Sdridrjj2 rð ÞTind , and for the second two expressions we used the

fact that, to lowest order in Nd, the denominator in Eq. (45) is

equal to 1.

Finally, using Eq. (19) for the normalized correlation coefficient,

dropping the subscript ‘‘maxent’’ (since the first and second

moments are the same under the maxent and true distributions),

and inverting Eqs. (48b) and (48c) to express the external fields and

coupling coefficients in terms of the first and second moments, we

arrive at Eq (18).

Averages of powers of jp and jq

Here we compute Sjm
p jn

qTind , which, as can be seen in Eq. (37),

is the key quantity in our perturbation expansion. Our starting

point is to (formally) expand the sums that make up jp and jq (see

Eqs. (29b) and (34b)), which yields

Sjp rð Þmjq rð ÞnTind

~
X?
l~2

X
m1,...,mlf g

y lð Þ
m1,...,ml

X
i1v...vil

Sdrm1

i1
. . . drml

il
T

ind
:
ð49Þ

The sum over m1, . . . ,mlf g is a sum over all possible

configurations of the mi. The coefficient y lð Þ
m1,...,ml

are complicated

functions of the J p
ij ,J

q
ij ,Kpijk,Kq

ijk, etc. Computing these functions

is straightforward, although somewhat tedious, especially when l is

large; below we compute them only for l~2 and 3. The reason l
starts at 2 is that mzn§2; see Eq. (37).

We first show that all terms with superscript lð Þ are O dl
� �

. To

do this, we note that, because the right hand side of Eq. (49) is an

average with respect to the independent distribution, the average

of the product is the product of the averages,

Sdrm1

i1
drm2

i2
. . . ,drml

il
Tind~Sdrm1

i1
TindSdrm2

i2
Tind . . . ,Sdrml

il
Tind : ð50Þ

Then, using the fact that dri~ 1{rið Þ with probability ri and {ri

with probability 1{rið Þ (see Eq. (29c)), we have

Sdrm
i Tind~ri 1{rið Þmz 1{rið Þ {rið Þm

~ri 1{rið Þm 1{
{ri

1{ri

� 	m{1
" #

:
ð51Þ

The significance of this expression is that, for mw1,

Sdrm
i Tind*O rið Þ*O dð Þ, independent of m. Consequently, if all

the mi in Eq. (50) are greater than 1, then the right hand side is

O dl
� �

. This shows that, as promised above, the superscript lð Þ
labels the order of the terms.

As we saw in the section ‘‘The KL divergence in the Sarmanov-

Lancaster representation’’, we need to go to third order in d,

which means we need to compute the terms on the right hand side

of Eq. (49) with l~2 and 3. Let us start with l~2, which picks out

only those terms with two unique indices. Examining the

expressions for jp and jq given in Eqs. (29b) and (34b), we see

that we must keep only terms involving J ij , since Kijk has three

indices, and higher order terms have more. Thus, the l~2
contribution to the average in Eq. (49), which we denote

Sjp rð Þjq rð ÞT 2ð Þ
ind , is given by

Sjp rð Þmjq rð ÞnT 2ð Þ
ind~

X
ivj

S J p
ijdridrj

� �m

J q
ijdridrj

� �n

T
ind
:

Pulling J p
ij and J q

ij out of the averages, using Eq. (33a) to

eliminate J p
ij and J q

ij in favor of rp
ij and rq

ij , and applying Eq. (51)

(while throwing away some of the terms in that equation that are

higher than second order in d), the above expression may be

written
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Sjp rð Þmjq rð ÞnT 2ð Þ
ind

~
X
ivj

rirj r
p
ij

� �m

r
q
ij

� �n

1{ {rið Þmzn{1
{ {rj

� �mzn{1
h i

:
ð52Þ

Note that we were not quite consistent in our ordering with

respect to d, in the sense that we kept some higher order terms and

not others. We did this so that we could use rij rather than J ij , as

the former is directly observable.

For l~3 the calculation is more involved, but not substantially

so. Including terms with exactly three unique indices in the sum on

the right hand side of Eq. (49) gives us

Sjp rð Þmjq rð ÞnT 3ð Þ
ind

~
X

ivjvk

S Kp
ijkdridrjdrkzJ p

ijdridrjzJ p
ikdridrkzJ p

jkdrjdrk

� �m

Kq
ijkdridrjdrkzJ q

ijdridrjzJ q
ikdridrkzJ q

jkdrjdrk

� �n

Tind :

ð53Þ

This expression is not quite correct, since some of the terms

contain only two unique indices—these are the terms proportional

to J p
ij

� �m

J p
ij

� �n

—whereas it should contain only terms with

exactly three unique indices. Fortunately, this turns out not to

matter, for reasons we discuss at the end of the section.

To perform the averages in Eq. (53), we would need to use

multinomial expansions, and then average over the resulting

powers of dr0s. For the latter, we can work to lowest order in dri,

which means we only take the first term in Eq. (51). This

amounts to replacing every dri with 1{ri (and similarly for j and

k), and in addition multiplying the whole expression by an

overall factor of rirjrk. For example, if m~1 and n~2, one of

the terms in the multinomial expansion is

Kp
ijkJ

q
ijJ

q
ikSdr3

i dr2
j dr2

kTind . This average would yield, using Eq.

(51) and considering only the lowest order term,

rirjrk 1{rið Þ3 1{rj

� �2
1{rkð Þ2.

This procedure also is not quite correct, since terms with only

one factor of dri, which average to zero, are replaced with 1{ri.

This also turns out not to matter; again, we discuss why at the end

of the section.

We can, then, go ahead and use the above ‘‘replace blindly’’

algorithm. Note that the factors of 1{ri, 1{rj and 1{rk turn J ij

and Kijk into normalized correlation coefficients (see Eq. (33)),

which considerably simplifies our equations. Using also Eq. (39) for

~rrijk, Eq. (53) becomes

Sjp rð Þmjq rð ÞnT 3ð Þ
ind~

X
ivjvk

rirjrk ~rrp
ijk

� �m

~rrq
ijk

� �n

: ð54Þ

We can now combine Eqs. (52) and (54), and insert them into

Eq. (49). This gives us the first two terms in the perturbative

expansion of Sjp rð Þmjq rð ÞnTind ; the result is written down in Eq.

(38) above.

Why can we ignore the overcounting associated with terms in

which an index appears exactly zero or one times? We clearly

can’t do this in general, because for such terms, replacing dri with

1{ri fails—either because the terms didn’t exist in the first place

(when one of the indices never appeared) or because they averaged

to zero (when an index appeared exactly once). In our case,

however, such terms do not appear in the Taylor expansion. To

see why, note first of all that, because of the form of f x,yð Þ, its

Taylor expansion can be written x{yð Þ2~ff x,yð Þ where ~ff x,yð Þ is

finite at x~y (see Eq. (36)). Consequently, the original Taylor

expansion of DKL pkqð Þ, Eq. (37), should contain a factor of

jp{jq

� �2
; i.e.,

DKL pkqð Þ~ 1

ln 2

X
m,n

cmnSjp rð Þmjq rð Þn jp rð Þ{jq rð Þ
� �2T

where the cmn are the coefficients of the Taylor expansion of

~ff jp,jq

� �
. The factor jp rð Þ{jq rð Þ

� �2
, when expanded, has the

form

Kp
ijk{K

q
ijk

� �
dridrjdrkz J p

ij{J
q
ij

� �
dridrjz

�

J p
ik{J

q
ik

� �
dridrkz J p

jk{J
q
jk

� �
drjdrk

�2

:

As we saw in the previous section, we are interested in the

third order term only to compute DKL ptruekppair

� �
, for which

J p
ij~J

q
ij . Therefore, the above multiplicative factor reduces to

Kp
ijk{K

q
ijk

� �2

dridrjdrk

� �2
. It is that last factor of dridrjdrk

� �2

that is important, since it guarantees that for every term in the

Taylor expansion, all indices appear at least twice. Therefore,

although Eq. (53) is not true in general, it is valid for our

analysis.

We end this section by pointing out that there is a very

simple procedure for computing averages to second order in d.

Consider a function w jp,jq

� �
that has a minimum at jp~jq~0

and also obeys w 0,0ð Þ~0. Then, based on the above analysis,

we have

Sw jp,jq

� �
Tind~

X
ivj

rirjw J p
ij ,J

q
ij

� �
zO Ndð Þ3

� �
: ð55Þ

Two easy corollaries of this are: for k and l positive integers,

Sdrk
i w jp,jq

� �
Tind~

X
j=i

rirjw J p
ij ,J

q
ij

� �
zO N2d3

� �
ð56aÞ

Sdrk
i drl

jw jp,jq

� �
Tind~rirjw J p

ij ,J
q
ij

� �
zO Nd3

� �
ð56bÞ

where the sum in Eq. (56a) runs over j only, and we used the fact

that both J p
ij and J q

ij are symmetric with respect to the

interchange of i and j.

Generating synthetic data
As can be seen in Eq. (13), the synthetic data depends on three

sets of parameters: htrue
i ,Jtrue

ij , and Ktrue
ijk . Here we describe how

they were generated.

To generate the htrue
i , we draw a set of firing rates, r�1,r�2, . . . ,r�N� ,

from an exponential distribution with mean 0.02 (recall that N�,
which we set to 15, is the number of neurons in our base

distribution). From this we chose the external field according to

Eq. (18a),
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htrue
i ~{log

1

r�i
{1

� 	
:

In the perturbative regime, a distribution generated with these

values of the external fields has firing rates approximately equal to

the r�i ; see Eq. (18a) and Fig. 6.

To generate the Jtrue
ij and Ktrue

ijk , we drew them from Gaussian

distributions with means equal to 0.05 and 0.02 and standard

deviations of 0.8 and 0.5, respectively. Using non-zero values for

Kijk means that the true distribution is not pairwise.

Bin size and the correlation coefficients
One of our main claims is that DN is linear in bin size, dt. This is

true, however, only if gind and gpair are independent of dt, as can

be seen from Eq. (10b). In this section we show that independence

is satisfied if dt is smaller than the typical correlation time of the

responses. For dt larger than such correlation times, gind and gpair

do depend on dt, and DN is no longer linear in dt. Note, though,

that the correlation time is always finite, so there will always be a

bin size below which the linear relationship, DN*dt, is

guaranteed.

Examining Eqs. (42) and (44), we see that gind and gpair depend

on the normalized correlation coefficients, rij and ~rrijk (we drop

superscripts, since our discussion will be generic). Thus, to

understand how gind and gpair depend on bin size, we need to

understand how the normalized correlation coefficients depend on

bin size. To do that, we express them in terms of standard cross-

correlograms, as the cross-correlograms contain, in a very natural

way, information about the temporal timescales in the spike train.

We start with the second order correlation coefficient, since it is

simplest. The corresponding cross-correlogram, which we denote

Cij tð Þ, is given by

Cij tð Þ~ 1

ninj

lim
T??

1

T

X
kl

d tk
i {tl

j{t
� �

ð57Þ

where tk
i is the time of the kth spike on neuron i (and similarly for

tl
j ), and d :ð Þ is the Dirac d-function. The normalization in Eq. (57)

is slightly non-standard—more typical is to divide by something

with units of firing rate (ni, nj or ninj

� �1=2
), to give units of spikes/s.

The normalization we use is convenient, however, because in the

limit of large t, Cij tð Þ approaches one.

It is slightly tedious, but otherwise straightforward, to show that

when dt is sufficiently small that only one spike can occur in a time

bin, rij is related to Cij tð Þ via

rij~
1

dt

ðdt

{dt

dt 1{ tj j=dtð Þ Cij tð Þ{1
� �

: ð58Þ

The (unimportant) factor 1{ tj j=dtð Þ comes from the fact that

the spikes occur at random locations within a bin.

Equation (58) has a simple interpretation: rij is the average

height of the central peak of the cross-correlogram relative to

baseline. How strongly rij depends on dt is thus determined by the

shape of the cross-correlogram. If it is smooth, then rij approaches

a constant as dt becomes small. If, on the other hand, there is a

sharp peak at t~0, then rij*1=ndt~1=d for small dt, so long as

dt is larger than the width of the peak. (The factor of n included in

the scaling is approximate; it is a placeholder for an effective firing

rate that depends on the indices i and j. It is, however, sufficiently

accurate for our purposes.) A similar relationship exists between

the third order correlogram and the correlation coefficient. Thus,

~rrijk is also independent of dt in the small dt limit, whereas if the

central peak is sharp it scales as 1



d2.

The upshot of this analysis is that the shape of the cross-

correlogram has a profound effect on the correlation coefficients

and, therefore, on DN . What is the shape in real networks? The

answer typically depends on the physical distance between cells. If

two neurons are close, they are likely to receive common input and

thus exhibit a narrow central peak in their cross-correlogram. Just

how narrow depends on the area. Early in the sensory pathways,

such as retina [29–31] and LGN [32], peaks can be very narrow—

on the order of milliseconds. Deeper into cortex, however, peaks

tend to broaden, to at least tens of milliseconds [33,34]. If, on the

other hand, the neurons are far apart, they are less likely to receive

common input. In this case, the correlations come from external

stimuli, so the central peak tends to have a characteristic width

given by the temporal correlation time of the stimulus, typically

100 s of milliseconds.

Although clearly both kinds of cross-correlograms exist in any

single population of neurons, it is convenient to analyze them

separately. We have already considered networks in which the

cross-correlograms were broad and perfectly flat, so that the

correlation coefficients were strictly independent of bin size. We

can also consider the opposite extreme: networks in which the the

cross-correlograms (both second and higher order) among nearby

neurons exhibit sharp peaks while those among distant neurons

are uniformly equal to 1. In this regime, the correlation coefficients

depend on dt: as discussed above, the second order ones scale as

1=d and the third as 1=d2
. This means that the arguments of

f rij ,0
� �

and f ~rrtrue
ijk ,~rrpair

ijk

� �
are large (see Eqs. (42) and (44)). From

the definition of f x,yð Þ in Eq. (36), in this regime both are

approximately linear in their arguments (ignoring log corrections).

Consequently, f rij ,0
� �

*1=d and f ~rrtrue
ijk ,~rrpair

ijk

� �
*1



d2. This

implies that gind and gpair scale as Nd and N2d, respectively,

and so DN*N, independent of d. Thus, if the bin size is large

compared to the correlation time, DN will be approximately

independent of bin size.

Extending the normalized distance measure to the time
domain

In this section we derive the expression for c given in Eq. (25).

Our starting point is its definition, Eq. (24). It is convenient to

define R to be a concatenation of the responses in M time bins,

R: r1,r2, . . . ,rM
� �

ð59Þ

where, as in the section ‘‘Is there anything wrong with using small

time bins?’’, the superscript labels time, so 2 Rð Þ is the full,

temporally correlated, distribution.

With this definition, we may write the numerator in Eq. (24) as

DKL 2 Rð ÞkP
t

ppair rtð Þ
� �

~

{SM
true{

X
t

X
r

pt
true rð Þlog2ppair rð Þ

ð60Þ

where SM
true is the entropy of 2 Rð Þ, the last sum follows from a

marginalization over all but one element of 2 Rð Þ, and pt
true rð Þ is

the true distribution at time r (unlike in the section ‘‘Is there
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anything wrong with using small time bins?’’, here we do not

assume that the true distribution is the same in all time bins). Note

that ppair rð Þ is independent of time, since it is computed from a

time average of the true distribution. That time average, which we

call ptrue rð Þ, is given in terms of pt
true rð Þ as

ptrue rð Þ~ 1

M

X
t

pt
true rð Þ:

Inserting this definition into Eq. (60) eliminates the sum over t,

and replaces it with Mptrue rð Þ. For simplicity we consider the

maximum entropy pairwise model. In this case, because ppair rð Þ is in

the exponential family, and the first and second moments are the

same under the true and maximum entropy distributions, we can

replace ptrue rð Þ with pmaxent rð Þ. Consequently, Eq. (60) becomes

DKL 2 Rð ÞkP
t

ppair rtð Þ
� �

~MSmaxent{SM
true:

This gives us the numerator in the expression for c (Eq. (24));

using Eq. (4) to write DKL ptruekpindð Þ~Sind{Strue, the full

expression for c becomes

c~
M Smaxent{Strueð Þ

M Sind{Strueð Þ z
MStrue{SM

true

M Sind{Strueð Þ : ð61Þ

where we added and subtracted MStrue to the numerator.

The first term on the right hand side of Eq. (61) we recognize, from

Eq. (6), as DN . To cast the second into a reasonable form, we define

SM
ind to be the entropy of the distribution that retains the temporal

correlations within each neuron but is independent across neurons.

Then, adding and subtracting this quantity to the numerator in Eq.

(61), and also adding and subtracting MSind , we have

c~DNz
SM

ind{SM
true

� �
{M Sind{Strueð Þz MSind{SM

ind

� �
M Sind{Strueð Þ : ð62Þ

The key observation is that if Md%1, then

SM
ind{SM

true~gindN N{1ð Þ Mdð Þ2:

Comparing this with Eqs. (8a) and (9a), we see that SM
ind{SM

true is

a factor of M2 times larger than Sind{Strue. We thus have

c~DNz M{1ð Þz MSind{SM
ind

M Sind{Strueð Þ : ð63Þ

Again assuming Md%1, and defining h xð Þ:{xlog2x{
1{xð Þlog2 1{xð Þ, the last term in this expression may be

written

MSind{SM
ind~M

X
i

h rið Þ{
X

i

h Mrið Þ

&M
X

i

rilog2M~Nd|M log2M:
ð64Þ

Inserting this into Eq. (63) and using Eqs. (4), (8a) and (9a) yields

Eq. (25).

We have assumed here that Md%1; what happens when

Md*1, or larger? To answer this, we rewrite Eq. (61) as

c~
Smaxent{SM

true



M

Sind{Strue

: ð65Þ

We argue that in general, as M increases, SM
true



M becomes

increasingly different from Smaxent, since the former was derived

under the assumption that the responses at different time bins were

independent. Thus, Eq. (25) should be considered a lower bound

on c.
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