189 research outputs found
Motion frozen 18F-FDG cardiac PET
BackgroundPET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. "Cardiac Motion Frozen" (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.MethodsStatic and 16-bin ECG-gated images of 20 patients referred for (18)F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.ResultsThe measured wall thickness was 18.9 ± 5.2 mm for 2D-AWOSEM, 16.6 ± 4.5 mm for PSF, and 13.8 ± 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ± 2.7, 10.0 ± 5.7) were higher than for 2D-AWOSEM (3.5 ± 1.4, 6.5 ± 3.1) and for PSF (3.9 ± 1.7, 7.7 ± 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ± 17.5) was comparable to PSF (29.1 ± 18.3), but higher than for ED-gated dataset (13.7 ± 8.8, P < .05).ConclusionCombined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction
Respiration-averaged CT versus standard CT attenuation maps for correction of the 18F-NaF uptake in hybrid PET/CT
BACKGROUND: To evaluate the impact of respiratory-averaged computed tomography attenuation correction (RACTAC) compared to standard single-phase computed tomography attenuation correction (CTAC) map, on the quantitative measures of coronary atherosclerotic lesions of (18)F-sodium fluoride ((18)F-NaF) uptake in hybrid positron emission tomography and computed tomography (PET/CT). METHODS: This study comprised 23 patients who underwent (18)F-NaF coronary PET in a hybrid PET/CT system. All patients had a standard single-phase CTAC obtained during free-breathing and a 4D cine-CT scan. From the cine-CT acquisition, RACTAC maps were obtained by averaging all images acquired over 5 seconds. PET reconstructions using either CTAC or RACTAC were compared. The quantitative impact of employing RACTAC was assessed using maximum target-to-background (TBR(MAX)) and coronary microcalcification activity (CMA). Statistical differences were analyzed using reproducibility coefficients and Bland-Altman plots. RESULTS: In 23 patients, we evaluated 34 coronary lesions using CTAC and RACTAC reconstructions. There was good agreement between CTAC and RACTAC for TBR(MAX) (median [Interquartile range]): CTAC= 1.65[1.23–2.38], RACTAC= 1.63[1.23–2.33], p=0.55), with coefficient of reproducibility of 0.18, and CMA: CTAC= 0.10 [0–1.0], RACTAC= 0.15[0–1.03], p=0.55 with coefficient of reproducibility of 0.17 CONCLUSION: Respiratory-averaged and standard single-phase attenuation correction maps provide similar and reproducible methods of quantifying coronary (18)F-NaF uptake on PET/CT
Late gadolinium uptake demonstrated with magnetic resonance in patients where automated PERFIT analysis of myocardial SPECT suggests irreversible perfusion defect
<p>Abstract</p> <p>Background</p> <p>Myocardial perfusion single photon emission computed tomography (MPS) is frequently used as the reference method for the determination of myocardial infarct size. PERFIT<sup>® </sup>is a software utilizing a three-dimensional gender specific, averaged heart model for the automatic evaluation of myocardial perfusion. The purpose of this study was to compare the perfusion defect size on MPS, assessed with PERFIT, with the hyperenhanced volume assessed by late gadolinium enhancement magnetic resonance imaging (LGE) and to relate their effect on the wall motion score index (WMSI) assessed with cine magnetic resonance imaging (cine-MRI) and echocardiography (echo).</p> <p>Methods</p> <p>LGE was performed in 40 patients where clinical MPS showed an irreversible uptake reduction suggesting a myocardial scar. Infarct volume, extent and major coronary supply were compared between MPS and LGE as well as the relationship between infarct size from both methods and WMSI.</p> <p>Results</p> <p>MPS showed a slightly larger infarct volume than LGE (MPS 29.6 ± 23.2 ml, LGE 22.1 ± 16.9 ml, p = 0.01), while no significant difference was found in infarct extent (MPS 11.7 ± 9.4%, LGE 13.0 ± 9.6%). The correlation coefficients between methods in respect to infarct size and infarct extent were 0.71 and 0.63 respectively. WMSI determined with cine-MRI correlated moderately with infarct volume and infarct extent (cine-MRI vs MPS volume r = 0.71, extent r = 0.71, cine-MRI vs LGE volume r = 0.62, extent r = 0.60). Similar results were achieved when wall motion was determined with echo. Both MPS and LGE showed the same major coronary supply to the infarct area in a majority of patients, Kappa = 0.84.</p> <p>Conclusion</p> <p>MPS and LGE agree moderately in the determination of infarct size in both absolute and relative terms, although infarct volume is slightly larger with MPS. The correlation between WMSI and infarct size is moderate.</p
- …