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Abstract
Purpose Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and 
imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use 
cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) 
myocardial perfusion imaging (MPI).
Methods From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery 
disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) param-
eters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause 
mortality was compared to stress total perfusion deficit (< 5%, 5–10%, ≥10%).
Results Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus 
and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the 
external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster 
analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval 
(CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion 
deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference).
Conclusions Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct 
phenotypic clusters and predicted all-cause mortality better than ischemia alone.

Keywords Machine learning · SPECT myocardial perfusion · Coronary artery disease · Cluster analysis · Cardiovascular 
risk

Abbreviations
CAD  Coronary artery disease
CCTA   Coronary computed tomography 

angiography
MACE  Major adverse cardiac events
MPI  Myocardial perfusion imaging

MRI  Magnetic resonance imaging
REFINE SPECT  REgistry of Fast Myocardial Perfusion 

Imaging with NExt generation SPECT
SPECT   Single-photon emission computed 

tomography

Introduction

Patients with known coronary artery disease are a heter-
ogenous population with varied clinical and imaging char-
acteristics. Despite advances in contemporary medical, 
interventional, and surgical management, there remains 
a subgroup of patients with known cardiovascular disease 
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who are at high risk of cardiac events and mortality [1]. 
Improved methods to characterize patients with known 
coronary artery disease who are at increased risk of car-
diac events would enable more personalized, targeted man-
agement, and guide the use of new medical therapies.

Myocardial perfusion imaging (MPI) with single-pho-
ton emission computed tomography (SPECT) is an estab-
lished technique to identify myocardial ischemia and risk-
stratify patients [2]. Quantitative information from SPECT 
can provide valuable additional prognostic information 
over and above visual assessment alone [3]. Recently, 
the multi-center REgistry of Fast Myocardial Perfusion 
Imaging with NExt generation SPECT (REFINE SPECT) 
registry has been established, which aims to create a com-
prehensive clinical and imaging database of the latest gen-
eration SPECT images which are processed with quantita-
tive software [4]. Supervised machine learning has been 
used to combine clinical and quantitative imaging features 
to improve prognostic assessment of patients undergoing 
SPECT [3, 5–7]. However, unsupervised machine learning 
has the potential to identify new cardiovascular pheno-
types with unique prognostic implications.

Unsupervised machine learning aims to identify groups, 
or clusters, of patients which have similar combinations of 
characteristics, without the impact of biases from clinical 
experts or information on subsequent outcomes. Unsuper-
vised learning differs from more commonly applied super-
vised methods by learning to separate data distributions 
into clusters, rather than being trained to predict specific 
classification or regression outcomes. This distinction 
allows unsupervised methods to unveil new patterns in 
cardiovascular diseases, to develop new understanding of 
disease phenotypes, and to identify novel high-risk groups 
without outcome bias. Cluster analysis has previously been 
used to identify clinical and imaging features that pre-
dict the risk of future cardiovascular events using mag-
netic resonance imaging, coronary computed tomography 
angiography, and echocardiography [8–10]. However, this 
technique has not previously been applied to MPI (SPECT 
or PET) or shown to improve prognostication for patients 
with known coronary artery disease in any imaging modal-
ity. Patients with known coronary artery disease represent 
a unique clinical challenge as a subset of these patients are 
at the highest risk of myocardial infarction, whereas others 
remain event free. Of the currently available prognostic 
scores for patients with known coronary artery disease, 
few incorporate these non-invasive imaging metrics, and 
their performance is low [11].

This study aims to use unsupervised machine learning 
to identify clusters amongst patients with known coronary 
artery disease who underwent SPECT MPI, and to assess 
how these phenotypic clusters differ in terms of all-cause 
mortality and subsequent cardiac events.

Materials and methods

Study design

In this multicenter, retrospective analysis of imaging and 
clinical data from the expanded REFINE SPECT registry 
[4], we performed unsupervised machine learning to iden-
tify phenotypic clusters amongst patients with known coro-
nary artery disease who had undergone SPECT MPI, and to 
assess the association of these cluster groups with outcomes. 
The study complied with the Declaration of Helsinki and 
was approved by the institutional review boards of local sites 
and Cedars-Sinai Medical Center.

Study population

The REFINE SPECT registry is an international multicenter 
registry of consecutive patients undergoing clinically indi-
cated SPECT MPI which currently includes 37,298 patients 
from 10 worldwide sites [4]. From this registry, we selected 
patients with known coronary artery disease, defined as 
those with (one or more of) previous myocardial infarc-
tion, percutaneous coronary intervention, or coronary 
artery bypass grafting. Inclusion and exclusion criteria are 
detailed in Fig. 1. Patients were excluded if stress imaging 
was not available (n = 16), if follow-up information on death 
or major adverse cardiovascular events (MACE) was incom-
plete (n = 68), or if they had no previous history of coronary 
artery disease (n = 27,993).

Clinical information

Clinical information was obtained from the REFINE SPECT 
registry database and included demographic information, 
cardiovascular risk factors, past medical history, and resting 
electrocardiogram (ECG) findings (Supplementary Table 1).

SPECT MPI

SPECT MPI was performed at 10 sites (Assuta Medical 
Center, Tel Aviv, Israel; Brigham and Women’s Hospital, 
Boston, USA; Cedars-Sinai Medical Center, Los Angeles, 
CA, USA; Oklahoma Heart Hospital, Oklahoma City, OK, 
USA; Oregon Heart and Vascular Institute, Springfield, 
OR, USA; Ottawa Heart Institute, Ottawa, Ontario, Canada; 
University of Calgary, Calgary, Alberta, Canada; University 
of Naples, Naples, Italy; Yale University, New Haven, CT, 
USA; University Hospital Zurich, Zurich, Switzerland) 
with three different scanners (GE Discovery NM 530c, GE 
Discovery 570c, GE Healthcare, Haifa, Israel, and D-SPECT, 
Spectrum Dynamics, Haifa, Israel). SPECT acquisition 
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parameters were recorded, including the type of stress 
performed, the physiological and clinical response to stress, 
and the isotope type and dose (Supplementary Table 1).

Quantitative SPECT MPI parameters were generated 
automatically using the Quantitative Perfusion SPECT 
(QPS)/Quantitative Gated SPECT (QGS) software 
(Cedars-Sinai Medical Center, Los Angeles, CA, USA) 
[12, 13]. Deidentified images were reviewed by core labo-
ratory technologists, blinded to clinical data, for quality 
control. QPS/QGS was then used to generate myocardial 
contours and automatically generate quantitative SPECT 
MPI parameters including 24 stress/rest, gated/ungated, 
perfusion, and function parameters (parameters provided 
by group in Supplementary Table 1). Stress total perfu-
sion deficit from a single position was classified as < 5%, 
5–10%, or ≥10% for analysis. Quantitative percent 
ischemia was automatically determined as the difference 
between stress and rest total perfusion deficits, and was 
classified as < 5%, 5–10%, or ≥10% for analysis [3]. Single 
position acquisitions were obtained for 1,422/9,221 (15%) 
patients; therefore, we did not use two-position combined 
TPD.

Data preprocessing

Data from four original REFINE SPECT sites (Assuta 
Medical Center, Brigham and Women’s Hospital, Cedars-
Sinai Medical Center, Oregon Heart and Vascular Insti-
tute; n = 4774) were used as the internal cohort to perform 
unsupervised learning and to understand the clinical char-
acteristics of the clusters. Data from six sites (Oklahoma 
Heart Center, Ottawa Heart Institute, University of Cal-
gary, University of Naples, University Hospital Zurich, 
Yale University; n = 4447) was used as the external cohort 
to test impact of the cluster groups on outcomes (Fig. 1). 
All external site data was from the new REFINE SPECT 
sites, except for Ottawa, which was included with the 
external set to balance the sizes of the internal training 
and external testing cohorts. Clinical and imaging char-
acteristics for internal and external cohorts are provided 
in Supplementary Table 2.

Data preprocessing to provide the machine learning 
algorithm with clean, uniform, and consistent data was 
performed. Machine learning analysis was performed 
in Python (version 3.9.7) using clinical information (23 
parameters), acquisition parameters (17 parameters), and 
quantitative image analysis parameters (24 parameters; 
Supplementary Table 1). Visual SPECT-MPI assessments 
were not used to avoid potential clinician biases. Cardio-
vascular events and mortality were not used in the analysis 
because we wanted to develop a model that could pheno-
type and derive new pathophysiologic insights for patients 
at the time of imaging without bias towards specific out-
comes. Unsupervised cluster analysis fits these require-
ments as the model learns to separate patients according 
to their individual data profile without a priori exposure 
to any outcome. Features with > 25% missingness were 
dropped from the set used for model fitting. Missing varia-
bles were imputed using median imputation for continuous 
variables and mode imputation for categorical variables. 
Data normalization was applied only when selected as an 
optional hyperparameter (Supplementary Table 3).

Clinical outcomes

Patients were followed up for the occurrence of revascu-
larization, myocardial infarction, unstable angina, percuta-
neous coronary intervention, coronary artery bypass graft-
ing, and all-cause mortality. Major adverse cardiovascular 
events (MACE) were defined as coronary revasculariza-
tion, myocardial infarction, admission for unstable angina, 
or all-cause mortality. Prognostic information for some of 
this population at 5 years has previously been reported [3].

Fig. 1  Consort diagram. Inclusion and exclusion criteria for ret-
rospective analysis. MACE, major adverse cardiovascular event; 
REFINE SPECT, REgistry of Fast Myocardial Perfusion Imaging 
with NExt generation SPECT
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Unsupervised machine learning

Our primary tool is an unsupervised learning model that 
assigns patients to novel clusters for further analysis. This 
model first maps high dimensional patient data to a much 
lower-dimensional embedding space where patients can be 
efficiently clustered.

Dimensionality reduction was performed using the 
non-linear Uniform Manifold Approximation and Projec-
tion (UMAP) toolkit (UMAP Learn, version 0.5.2) [14]. 
Dimensionality reduction improves the performance of 
cluster analysis by simplifying the input feature space prior 
to clustering, reducing computation time and noise, while 
preserving the global data structure (i.e., the relative rela-
tionships between patients in the data) [14]. Traditional dis-
tance metrics break down at high dimensions, necessitating 
dimensionality reduction prior to clustering [15]. UMAP 
was selected as the primary engine for our unsupervised 
pipeline as it utilizes non-linear manifold approximation 
theory to estimate a low-dimensional data representation in 
a more efficient and scalable manner than other commonly 
used methods, while retaining a stable model representa-
tion that is saved and viable for clinical deployment [16]. 
Cao et al. demonstrated the robustness of UMAP to embed 
high dimensional data from cellular biology into a new rep-
resentation, leading to fewer clusters than other commonly 
used methods [17]. The nature of our high-dimensional and 
multi-modal application supports the application of UMAP, 
which is expected to maintain performance as imaging tech-
nology advances and the total number of imaging variables 
grows. Reduction to three dimensions prior to clustering 
was selected to balance visualization of formed clusters with 
the embedding complexity. UMAP models were tested with 
classical clustering algorithms (hierarchical, k-means, gauss-
ian mixture model; Scikit-Learn package, version 1.0.1) dur-
ing internal model selection and validation.

A grid search was used to select the optimal dimension-
ality reduction parameters, clustering method, and number 
of clusters. Parameter ranges presented in Supplementary 
Table 3 were selected with the intention of producing a 
wide range of embedding structures and clustering com-
binations. Each set of parameters was evaluated and com-
pared using the silhouette coefficient, with the optimal 
model being the configuration with the highest mean sil-
houette coefficient across the entire grid search. Silhouette 
coefficients are a standard metric to assess how well clus-
ters are separated by assessing the separation distance of 
individuals between and within a cluster [18]. Silhouette 
scores (range: -1 to 1) increase as the distances to other 
patients in the same cluster decrease and the distances to 
patients from other clusters increase. They are similar to 
cluster-comparison metrics like the Davies-Bouldin and 

Calinski-Harabasz indices, with the advantage of provid-
ing in-built normalization so that scores are not biased to 
cluster sizes.

To validate the clinical utility of the unsupervised cluster-
ing, the model was tested in the external cohort. The trained 
dimensionality reduction model and the coordinates of the 
three cluster centroids derived in the internal cohort were 
used to assign external cohort patients to similar clusters.

Statistical analysis

Statistical analysis was performed using R (version 4.1.1). 
Normally distributed data are presented with mean and 
standard deviation. Data that are not normally distributed are 
presented as median and interquartile range (IQR). Categori-
cal data are presented as number and percentage. Statistical 
significance was assessed using Mann–Whitney Wilcoxon, 
Kruskal–Wallis rank sum, or Pearson’s chi-squared test. 
The hypergeometric distribution v-test (FactoMine R pack-
age, version 2.4) was performed to assess the representa-
tion of variables within each cluster, with a positive v-test 
score indicating over-representation of the variable within 
the cluster and a negative v-test score indicating under-rep-
resentation [19]. Outcome data were analyzed using Cox 
proportional-hazards analysis with hazard ratios (HR), and 
95% confidence intervals (CI) were calculated and compared 
using the global log-rank test and Wald test. Kaplan–Meier 
curves were constructed. A two-sided p-value < 0.05 was 
considered statistically significant. Separate survival analy-
sis disaggregated by sex is presented according to the recom-
mended use of SAGER guidelines for sex and gender equity 
in research [20].

Results

Study population

From 37,298 patients in the expanded REFINE SPECT reg-
istry, we identified 9221 patients with known coronary artery 
disease from ten sites where both clinical and imaging data 
was available. Cluster analysis was performed using data 
from 4774 patients in the internal cohort. These patients had 
a median age of 67 [IQR 60 to 75] years, and 78% (n = 3704) 
were male (Table 1). Forty-five percent (n = 2166) had a 
previous myocardial infarction, 71% (n = 3409) had previ-
ous percutaneous coronary intervention, and 2.5% (n = 121) 
had previous coronary artery bypass grafting. Similar demo-
graphic characteristics were present in the external cohort 
(Supplementary Table 4).
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Unsupervised machine learning

The optimal unsupervised clustering method used the Bray-
curtis distance metric for dimensionality reduction with 
UMAP and K-means clustering. This model identified 3 
optimal clusters, with a silhouette score of 0.93 (Supple-
mentary Fig. 1). Based on clinical, acquisition, and quantita-
tive imaging parameters, patients in the internal cohort were 
divided into three phenotypic clusters which were called 
Cluster 1 (n = 2005), Cluster 2 (n = 1580), and Cluster 3 
(n = 1189; Fig. 2). This method was used to assign patients 
in the external cohort into three distinct clusters (Cluster 1, 
n = 1799; Cluster 2, n = 2213; Cluster 3, n = 435) which were 
used for assessment of cardiovascular outcomes.

Clinical phenotypes of clusters

Patients in Cluster 3 had a higher body mass index and 
more hypertension, diabetes mellitus, smoking (p < 0.01 
internal), and peripheral vascular disease (p < 0.001 for all 
others; Table 1; Supplementary Table 4). They were more 
likely to have had a previous myocardial infarction (p < 0.05 
internal), to present with typical or atypical symptoms, and 
to have an abnormal resting electrocardiogram (p < 0.001 

for all others). However, they were less likely to be male or 
have dyslipidemia (p < 0.001 for all). V-test scores showed 
that the clinical parameters which were the most over-rep-
resented in Cluster 3 were peripheral vascular disease, rest 
systolic blood pressure, symptoms of atypical angina, body 
mass index, and female gender (Supplementary Fig. 2).

In contrast, patients in Cluster 1 were younger, more 
likely to be male and have dyslipidemia, a family history of 
coronary artery disease, and be asymptomatic (p < 0.001 for 
all; Table 1; Supplementary Table 4). V-test scores showed 
that the clinical parameters which were over-represented in 
the Cluster 1 were height, family history of coronary artery 
disease, and male gender (Supplementary Fig. 2).

Imaging phenotypes of clusters

Patients in Cluster 3 were less likely to undergo exercise 
stress or have abnormal electrocardiogram response to stress 
than patients in Cluster 1 (p < 0.001 for all; Table 2; Sup-
plementary Table 4). V-test scores showed that pharmaco-
logical stress, stress administered activity, and ischemic 
or non-diagnostic clinical response to stress were over-
represented in Cluster 3 (p < 0.001 for all; Supplementary 
Fig. 2). In contrast, patients in Cluster 1 were more likely 

Table 1  Demographic characteristics for all patients and clusters in the internal cohort

Number (%), median (interquartile range), bold indicates p < 0.05
BMI body mass index, CABG coronary artery bypass graft, CAD coronary artery disease, ECG electrocardiogram, PCI percutaneous coronary 
intervention, PVD peripheral vascular disease, TAVR transcutaneous aortic valve replacement

All patients Cluster 1 Cluster 2 Cluster 3 P

N 4774 2005 1580 1189 -
Age (years) 67 (60, 75) 64 (57, 71) 70 (63, 77) 69 (61, 78)  < 0.001
Male 3704 (78%) 1667 (83%) 1264 (80%) 773 (65%)  < 0.001
BMI (kg/m2) 28 (25, 31) 27 (25, 30) 28 (25, 31) 29 (26, 33)  < 0.001
Hypertension 3658 (77%) 1480 (74%) 1166 (74%) 1012 (85%)  < 0.001
Diabetes mellitus 1736 (36%) 590 (29%) 646 (41%) 500 (42%)  < 0.001
Dyslipidemia 4067 (85%) 1766 (88%) 1342 (85%) 959 (81%)  < 0.001
Family history of CAD 1169 (24%) 629 (31%) 220 (14%) 320 (27%)  < 0.001
Smoking 594 (12%) 214 (11%) 202 (13%) 178 (15%) 0.002
Previous myocardial infarction 2166 (45%) 915 (46%) 677 (43%) 574 (48%) 0.017
Previous cardiac surgery or intervention PCI 3409 (71%) 1540 (77%) 1143 (72%) 726 (61%) 0.021

CABG 121 (2.5%) 53 (2.6%) 36 (2.3%) 32 (2.7%) 0.7
TAVR 21 (0.4%) 3 (0.1%) 0 (0%) 18 (1.5%)  < 0.001
Cardiac transplant 37 (0.8%) 1 (< 0.1%) 1 (< 0.1%) 35 (2.9%)  < 0.001
Other 29 (0.6%) 3 (0.1%) 0 (0%) 26 (2.2%)  < 0.001

Presenting symptoms Asymptomatic 2595 (54%) 1166 (58%) 904 (57%) 525 (44%)  < 0.001
Atypical angina 993 (21%) 352 (18%) 232 (15%) 409 (34%)
Non-anginal 839 (18%) 363 (18%) 319 (20%) 157 (13%)
Typical 347 (7.3%) 124 (6.2%) 125 (7.9%) 98 (8.2%)

Resting ECG abnormal 3526 (74%) 1416 (71%) 1222 (77%) 888 (75%)  < 0.001
Left ventricular hypertrophy 71 (1.5%) 30 (1.5%) 0 (0%) 41 (3.4%)  < 0.001
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to undergo exercise stress and have an abnormal electro-
cardiogram response to stress (p < 0.001 for all; Table 2; 
Supplementary Table 4). In Cluster 1, v-test scores showed 
that exercise stress, exercise duration, stress peak heart rate, 
positive heart rate response, and stress systolic blood were 
over-represented (p < 0.001 for all; Supplementary Fig. 2).

Quantitative SPECT-MPI analysis showed that patients 
in Cluster 3 had higher rest total perfusion deficit, and stress 
gated shape index on end diastolic and end systolic images 
(Fig. 3; Supplementary Table 5). Patients in Cluster 2 had 
the highest stress total perfusion deficit, percent ischemia, 
and stress and rest gated end diastolic and systolic volumes 
(p < 0.001 for all). Patients in Cluster 1 had the highest stress 
and rest ejection fraction (Supplementary Table 5).

Cardiovascular outcomes

During a median follow-up of 4.2 [3.3, 5.1] years, all-
cause mortality occurred in 584 patients (12%) and MACE 
in 1504 (32%) patients in the internal cohort (Table 3). 
Patients in Cluster 3 in the internal cohort were more likely 

to experience myocardial infarction, unstable angina, early 
revascularization, MACE, and all-cause mortality, but not 
all revascularization or coronary artery bypass grafting 
(Table 3).

During a median follow-up of 2.6 [0.14, 3.3] years, all-
cause mortality occurred in 312 (7%) of patients and MACE 
occurred in 1063 (24%) patients in the external cohort (Sup-
plementary Table 5). Patients in Cluster 3 in the external 
cohort were more likely to experience myocardial infarction, 
unstable angina, MACE, all-cause mortality, and revascu-
larization, but not coronary artery bypass grafting (Supple-
mentary Table 6).

In the external cohort, all-cause mortality was almost six 
times more likely in Cluster 3 compared to Cluster 1 (HR 5.9, 
95% CI 4.0 to 8.6, p < 0.001) and three times more likely in 
Cluster 2 (HR 3.3, 95% CI 2.5 to 4.5, p < 0.001; Fig. 4). In 
contrast, stress total perfusion deficit provided less risk dif-
ferentiation between groups for all-cause mortality (HR 1.9, 
95% CI 1.5 to 2.5, p < 0.001 for stress total perfusion deficit 
≥10% versus < 5%; Fig. 4). Similarly, ischemia provided less 
differentiation between groups for all-cause mortality (HR 1.8, 

Fig. 2  Distribution of clustered 
patients in the internal cohort. 
Top: radial plots provide a 
normalized summary of key 
clinical and quantitative imag-
ing features in phenotypic 
clusters. Bottom: embedding 
of internal cohort patients in 
the reduced embedding space. 
Components of the embedding 
space are independent summary 
measures that combine multiple 
input parameters, which are 
determined by the non-linear 
dimensionality reduction pro-
cess. Cluster 1: green, Cluster 2: 
yellow, Cluster 3: red. EF, stress 
ejection fraction; TPD, total 
perfusion deficit
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95% CI 1.3 to 2.5, p < 0.001 for quantitative percent ischemia 
≥10% versus < 5%; Supplementary Fig. 3).

In the external cohort, MACE was also more likely to occur 
in Cluster 3 (HR 4.2, 95% CI 3.4 to 5.1, p < 0.001), and Cluster 
2 (HR 1.2, 95% CI 1.1 to 1.4, p = 0.002), compared to Cluster 
1. In contrast, stress total perfusion deficit (HR 1.8, 95% CI 
1.6 to 2.1, p < 0.001 for stress total perfusion deficit ≥10% ver-
sus < 5%) and ischemia (HR 2.1, 95% CI 1.7 to 2.4, p < 0.001 
for quantitative percent ischemia ≥10% versus < 5%) provided 
less differentiation between groups for MACE (Fig. 5).

Results of Cox proportional hazards analysis for clusters 
disaggregated according to sex for both internal and external 
cohorts. Supplementary Tables 7–10 demonstrate consistent 
risk-stratification of male and female patients for all-cause 
mortality and MACE outcomes by learned clusters. Supple-
mentary Tables 11–12 demonstrate that risk-stratification by 
site in the training population is inferior to stratification by 
unsupervised clusters.

Discussion

We have implemented an unsupervised machine learn-
ing approach to identify new phenotypic clusters amongst 
patients with known coronary artery disease undergoing 

SPECT MPI. Patients with known coronary artery disease 
are an understudied and heterogenous group, and improved 
risk stratification for this population will advance targeted 
management strategies. In this large multicenter registry, 
we have identified three clusters. These clusters demon-
strated important differences in all-cause mortality and 
MACE, even though no outcome endpoints were included 
in the unsupervised machine learning model. The cluster-
ing was an unbiased approach based on clinical features, 
acquisition features, and fully automated quantitative image 
analysis features, without using information on cardiovascu-
lar events. The cluster assignment provided improved risk 
assessment compared to quantitative SPECT MPI ischemia 
alone. Importantly, we demonstrated excellent performance 
of the clustering approach in an external population not used 
for model training. In clinical practice, the use of these clus-
ters could improve personalized management of coronary 
artery disease by robust identification of patients at low, 
medium, and high risks of all-cause mortality and MACE 
after SPECT MPI.

For patients with known coronary artery disease with 
stable chest pain despite optimal guideline directed medi-
cal therapy, stress imaging has a Class I indication in the 
current ACC/AHA guidelines [2]. Assessing the sever-
ity of ischemia can be used to guide decisions regarding 

Table 2  SPECT acquisition characteristics for all patients and clusters in the internal cohort

Number (%), median (interquartile range), bold indicates p < 0.05
ECG electrocardiogram

All patients Cluster 1 Cluster 2 Cluster 3 P

N 4774 2005 1580 1189 -

Stress type Exercise 1987 (42%) 1986 (99%) 0 (0%) 1 (< 0.1%)  < 0.001
Pharmacological 2787 (58%) 19 (1%) 1580 (100%) 1188 (> 99%)

Clinical response to stress Non-ischemic 3196 (76%) 1518 (80%) 1302 (90%) 376 (43%)  < 0.001
Equivocal 187 (4.4%) 53 (2.8%) 0 (0%) 134 (15%)
Ischemic or abnormal 842 (17.6%) 332 (16.6%) 148 (9.3%) 362 (30.4%)

ECG response to stress Negative 2552 (54%) 1068 (53%) 790 (50%) 694 (58%)  < 0.001
Borderline or equivocal 335 (7%) 222 (11.1%) 84 (5.3%) 29 (2.4%)
Positive 513 (10.7%) 370 (18.4%) 96 (6.1%) 47 (4.0%)

Heart rate (Beats per minute) Rest 68 [60, 77] 69 [60, 79] 67 [60, 76] 67 [59, 76]  < 0.001
Stress peak 110 [88, 137] 141 [131, 150] 92 [80, 105] 90 [78, 104]  < 0.001

Systolic blood pressure (mmHg) Rest 130 [120, 140] 130 [120, 140] 130 [120, 140] 140 [124, 158]  < 0.001
Stress peak 150 [130, 170] 168 [154, 180] 140 [120, 150] 131 [119, 150]  < 0.001

Diastolic blood pressure (mmHg) Rest 80 [74, 80] 80 [78, 80] 80 [80, 80] 76 [68, 83]  < 0.001
Stress peak 80 [70, 80] 80 [80, 80] 80 [80, 80] 70 [62, 80]  < 0.001

Location Inpatient 444 (9.3%) 115 (5.7%) 0 (0%) 329 (28%)  < 0.001
Outpatient 4285 (90%) 1871 (93%) 1580 (100%) 834 (70%)
Emergency 43 (0.9%) 19 (0.9%) 0 (0%) 24 (2.0%)

Dose (MBq) Rest 555 (318, 925) 555 (303, 925) 925 (666, 925) 316 (285, 352)  < 0.001
Stress 370 (259, 973) 370 (259, 688) 333 (222, 370) 1214 (888, 1363)  < 0.001
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the use and intensification of anti-anginal medications 
and the use of invasive coronary angiography [2]. In our 
study, we have shown that the clustering based on clini-
cal, acquisition, and automated image analysis parameters 
can provide better stratification of risk compared to stress 

total perfusion deficit alone. This machine learning model 
was developed using automated SPECT MPI analysis, 
along with acquisition and clinical parameters, to provide 
an objective and reproducible input that is not depend-
ent on the site experience and reading style. The cluster 

Fig. 3  Clinical and quantitative imaging features in phenotypic clus-
ters. Radial plots show differences in the pattern of clinical features 
and quantitative imaging features in the internal cohort, with the 
whole population (blue), Cluster 1 (green), Cluster 2 (yellow), and 
Cluster 3 (red). The orange ring represents the whole population; 

inside this ring demonstrates under-representation and outside this 
ring demonstrates over-representation. ECG, electrocardiogram; EF, 
stress ejection fraction; MI, myocardial infarction; TPD, total perfu-
sion deficit

Table 3  Cardiovascular outcomes for all patients and clusters in the internal cohort

Number (%), bold indicates  p < 0.05
CABG coronary artery bypass graft, MACE major adverse cardiovascular events, PCI percutaneous coronary intervention
* 90 days

All Unsupervised machine learning Stress total perfusion deficit
Cluster 1 Cluster 2 Cluster 3 P  < 5% 5–10% ≥10% P

N 4774 2005 1580 1189 - 2394 958 1422 -
Early revascularization* 258 (5.4%) 87 (4.3%) 107 (6.8%) 64 (5.4%) 0.006 40 (1.7%) 49 (5.1%) 169 (12%)  < 0.001
All revascularization 922 (19%) 369 (18%) 336 (21%) 217 (18%) 0.055 359 (15%) 191 (20%) 372 (26%)  < 0.001
PCI 827 (17%) 326 (16%) 308 (19%) 193 (16%) 0.021 315 (13%) 181 (19%) 331 (23%)  < 0.001
CABG 121 (2.5%) 53 (2.6%) 36 (2.3%) 32 (2.7%) 0.7 50 (2.1%) 18 (1.9%) 53 (3.7%) 0.003
MI 156 (3.3%) 40 (2.0%) 61 (3.9%) 55 (4.6%)  < 0.001 62 (2.6%) 33 (3.4%) 61 (4.3%) 0.016
Unstable angina 157 (3.3%) 62 (3.1%) 1 (< 0.1%) 94 (7.9%)  < 0.001 77 (3.2%) 23 (2.4%) 57 (4.0%) 0.094
MACE 1504 (32%) 494 (25%) 513 (32%) 497 (42%)  < 0.001 584 (24%) 320 (33%) 600 (42%)  < 0.001
All-cause mortality 584 (12%) 97 (4.8%) 193 (12%) 294 (25%)  < 0.001 201 (8.4%) 129 (13%) 254 (18%)  < 0.001
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assignment can be available to clinicians at the time of 
reporting as an aid in the overall patient assessment.

Cluster analysis can also provide important information 
on the demographic characteristics of patients within each 
group, which can help to develop a new understanding of 
disease. In our study, the low-risk cluster was predominantly 
comprised of patients with established cardiovascular risk 
factors, but with overall good cardiovascular condition such 
as the ability to perform exercise stress and normal ejec-
tion fraction. In contrast, Cluster 3 represented patients with 
established cardiovascular risk factors but with poor cardio-
vascular condition, established findings of perfusion defects, 
and inability to perform exercise stress. We note that Cluster 
3 has higher proportion of female patients compared to Clus-
ters 1 and 2. While the reason for this is not clear, it may be 

that the unsupervised machine learning model is identifying 
combinations of risk factors and SPECT MPI findings that 
are more common in females. To our knowledge, this finding 
was not previously reported in the literature. Consistent risk 
stratification when results were disaggregated according to 
sex demonstrated that the dataset’s sex imbalance did not 
limit the applicability of this model to the minority group of 
female patients. Some variance between cluster characteris-
tics could be explained by site-specific protocols; however, 
the improved risk stratification provided by the clusters com-
pared to stratification by site in the internal training popu-
lation suggests that the algorithm is identifying more than 
site alone. Thus, the combination of the clinical, acquisition, 
and quantitative image analysis findings using unsupervised 
machine learning can identify new groups of patients with 

Fig. 4  Clinical implications of phenotypic clustering in terms of 
all-cause mortality. Kaplan–Meier curves for all-cause mortality 
by unsupervised learning clusters demonstrate strong risk stratifica-

tion compared to stress total perfusion deficit in internal and external 
cohorts. ** indicates p < 0.001; * indicates p < 0.05
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known coronary artery disease. Such unsupervised machine 
learning (not directly trained on outcome data as in standard 
statistical and machine learning approaches) is robust and 
resistant to overfitting as demonstrated in our external test-
ing of the clustering.

Automated quantitative analysis of SPECT MPI can 
provide additional information to improve risk stratifica-
tion compared to visual assessment alone in a variety of 
sub-groups within the REFINE SPECT registry [3, 21, 22]. 
Quantitative assessment of changes in ventricular morphol-
ogy such as shape and eccentricity indices has been shown 
to be independently associated with MACE [23]. Transient 
ischemic dilation and wall motion abnormalities have also 
been shown to identify patients with mild ischemia who 
are at increased risk [24]. There is an increasing number of 

clinical and imaging parameters which clinicians must syn-
thesize in decision making regarding patient care. The clus-
ter analysis provided in this paper provides a new method 
of synthesizing this information in an unbiased method-not 
directly driven by outcomes, to identify new and important 
phenotypic clusters. We have also shown in this paper that 
these phenotypic clusters have prognostic implications, 
which are robust in an external validation cohort. The trained 
models produced in this paper could be incorporated into 
semi-automatic SPECT software to automatically provide 
this information to physicians, but further work is required 
to assess the impact of this on decision making and patient 
care.

Supervised machine learning assessment of SPECT 
MPI parameters has previously been shown to be a better 

Fig. 5  Clinical implications of phenotypic clustering in terms of 
MACE. Kaplan–Meier curves for MACE by unsupervised learn-
ing clusters demonstrate strong risk stratification compared to stress 

total perfusion deficit in internal and external cohorts. ** indicates 
p < 0.001; * indicates p < 0.05; ns indicates p ≥ 0.05
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predictor of early coronary revascularization than assess-
ment by a nuclear cardiologist or automatically quantified 
tissue perfusion defects [7]. In supervised machine learn-
ing, the computer model is trained based on knowledge of 
a defined outcome, such as mortality or MACE. In con-
trast, in unsupervised machine learning, the computational 
model is not provided with an outcome and instead seeks 
to understand patterns in the data and create clusters based 
on phenotypic similarities. Unsupervised machine learning 
has recently emerged as a useful technique to identify new 
phenotype-based groupings in complex diseases without 
the pre-conceived biases of existing categories. It has been 
used to identify new classifications in patients undergoing 
a variety of imaging tests, including patients with bicuspid 
aortopathy undergoing computed tomography [25], healthy 
volunteers in the UK Biobank study undergoing cardiac MRI 
[26], patients with left ventricular assist devices undergo-
ing echocardiography preoperatively [27], and patients with 
aortic stenosis undergoing echocardiography [28]. It has also 
been used to identify new subtypes of patients based on clin-
ical characteristics in a variety of diseases including heart 
failure [29], hypertension [30], type 2 diabetes mellitus [31], 
and amyloidosis [32]. Our paper represents the first time that 
unsupervised machine learning has been applied to SPECT 
MPI to improve clinical prognostication and the first time 
the output of unsupervised machine learning has been tested 
independently in an external population. Our unsupervised 
technique provides unbiased clustering of patients, not influ-
enced by prior knowledge of the disease in question, as the 
model is trained without information on outcomes.

Study limitations

We must acknowledge some limitations of our study. This 
was a large study with data from four sites used to create 
the unsupervised machine learning model and data from six 
sites used for external validation. However, it was a retro-
spective study, with heterogeneity in the imaging technique 
between sites, including referrals, imaging protocols, and 
administered radiotracer doses. The heterogeneity in patient 
populations does increase the generalizability of our find-
ings. In addition, 78% of the patients included in this study 
were male, likely representing the pattern of disease in this 
population. Further work is therefore required with datasets 
from a larger number of centers including more women and 
using different protocols. Information on race and ethnic-
ity is not available in the REFINE SPECT registry; there-
fore, further work is required to assess the impact of this 
machine learning tool in more diverse populations. Other 
methods to perform unsupervised machine learning which 
were not explored in this paper may have revealed different 
results. Additionally, the UMAP model does not provide 

interpretability along axis of the fit dimensions. However, 
our use of well-known quantitative parameters allows for 
detailed analysis and interpretability of the divisions into 
clusters according to clinical practice.

Conclusion

In this study, unsupervised learning has identified new 
phenotypic clusters of SPECT MPI patients with known 
coronary artery disease. Despite not using outcomes during 
training, the model shows improved prognostic assessment 
as compared to standard quantitative measures. These clus-
ters could be used to help clinicians in robust identifica-
tion of high-risk patients and more personalized, targeted 
management.
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