357 research outputs found

    The Interaction of He with a ½<111>{110} Edge Dislocation in W and Mo

    Get PDF
    The positions of the metal atoms around a ½<111>{110} edge dislocation in Mo and W are calculated using the Wilson—Johnson potentials. The boundary conditions are given by anisotropic elasticity theory. The He—metal potential, also developed by Wilson and Johnson, is used to calculate the position with maximum energy gain for a He-atom

    Disclinations, dislocations and continuous defects: a reappraisal

    Full text link
    Disclinations, first observed in mesomorphic phases, are relevant to a number of ill-ordered condensed matter media, with continuous symmetries or frustrated order. They also appear in polycrystals at the edges of grain boundaries. They are of limited interest in solid single crystals, where, owing to their large elastic stresses, they mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, change of shape, involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye's dislocation densities, well suited here. The notion of 'extended Volterra process' takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by applications in amorphous solids, mesomorphic phases and frustrated media in their curved habit space. The powerful topological theory of line defects only considers defects stable against relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, well suited for media of high plasticity or/and complex structures. Topological stability cannot guarantee energetic stability and sometimes cannot distinguish finer details of structure of defects.Comment: 72 pages, 36 figure

    Recurrence analysis of the Portevin-Le Chatelier effect

    Full text link
    Tensile tests were carried out by deforming polycrystalline samples of Al-2.5%Mg alloy at room temperature in a wide range of strain rates where the Portevin-Le Chatelier (PLC) effect was observed. The experimental stress-time series data have been analyzed using the recurrence analysis technique based on the Recurrence Plot (RP) and the Recurrence Quantification Analysis (RQA) to study the change in the dynamical behavior of the PLC effect with the imposed strain rate. Our study revealed that the RQA is able to detect the unique crossover phenomenon in the PLC dynamics.Comment: 17 pages, 3 figure

    On the evaluation of the Bauschinger effect in an austenitic stainless steel—The role of multiscale residual stresses

    Get PDF
    In this work, a physically based self-consistent model is developed and employed to examine the microscopic lattice response of pre-strained Type 316H polycrystalline austenitic stainless steel subjected to uniaxial tensile and compressive loading. The model is also used to explain the Bauschinger effect observed at the macroscopic length-scale. Formulated in a crystal based plasticity framework, the model incorporates detailed strengthening effects associated with different microstructural elements such as forest dislocation junctions, solute atoms and precipitates on individual crystallographic slip planes of each individual grain within the polycrystal. The elastoplastic response of the bulk polycrystal is obtained by homogenizing the response of all the constituent grains using a self-consistent approach. Micro-plasticity mechanisms and how these influence the Bauschinger effect are illustrated in terms of the role of residual stresses at different length-scales. Overall, predictions are in good agreement with experimental data of the Bauschinger effect and the corresponding meso-scale lattice response of the material, with the latter measured by neutron diffraction. The results demonstrate that transient softening of the material is related to residual stresses at different length scales. In addition, the (Type III) residual stress at the micro-scale slip system level extends the strain range over which the tensile and compressive reloading curves of the pre-strained material merge
    • …
    corecore