3,035 research outputs found
Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England
This study conducted the first three dimensional microwear texture analysis of human deciduous teeth to reconstruct the physical properties of medieval childhood diet (age 1-8yrs) at St Gregory's Priory and Cemetery (11th to 16th century AD) in Canterbury, England. Occlusal texture complexity surfaces of maxillary molars from juvenile skeletons (n=44) were examined to assess dietary hardness. Anisotropy values were calculated to reconstruct dietary toughness, as well as jaw movements during chewing. Evidence of weaning was sought, and variation in the physical properties of food was assessed against age and socio-economic status. Results indicate that weaning had already commenced in the youngest children. Diet became tougher from four years of age, and harder from age six. Variation in microwear texture surfaces was related to historical textual evidence that refers to lifestyle developments for these age groups. Diet did not vary with socio-economic status, which differs to previously reported patterns for adults. We conclude, microwear texture analyses can provide a non-destructive tool for revealing subtle aspects of childhood diet in the past
Exclusion of Tiny Interstellar Dust Grains from the Heliosphere
The distribution of interstellar dust grains (ISDG) observed in the Solar
System depends on the nature of the interstellar medium-solar wind interaction.
The charge of the grains couples them to the interstellar magnetic field (ISMF)
resulting in some fraction of grains being excluded from the heliosphere while
grains on the larger end of the size distribution, with gyroradii comparable to
the size of the heliosphere, penetrate the termination shock. This results in a
skewing the size distribution detected in the Solar System.
We present new calculations of grain trajectories and the resultant grain
density distribution for small ISDGs propagating through the heliosphere. We
make use of detailed heliosphere model results, using three-dimensional (3-D)
magnetohydrodynamic/kinetic models designed to match data on the shape of the
termination shock and the relative deflection of interstellar neutral H and He
flowing into the heliosphere. We find that the necessary inclination of the
ISMF relative to the inflow direction results in an asymmetry in the
distribution of the larger grains (0.1 micron) that penetrate the heliopause.
Smaller grains (0.01 micron) are completely excluded from the Solar System at
the heliopause.Comment: 5 pages, 5 figures, accepted for publication in the Solar Wind 12
conference proceeding
Putting theory oriented evaluation into practice
Evaluations of gaming simulations and business games as teaching devices are typically end-state driven. This emphasis fails to detect how the simulation being evaluated does or does not bring about its desired consequences. This paper advances the use of a logic model approach which possesses a holistic perspective that aims at including all elements associated with the situation created by a game. The use of the logic model approach is illustrated as applied to Simgame, a board game created for secondary school level business education in six European Union countries
Mercury Orbiter: Report of the Science Working Team
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems
A Frequency-Controlled Magnetic Vortex Memory
Using the ultra low damping NiMnSb half-Heusler alloy patterned into
vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile
memory controlled by the frequency. A perpendicular bias magnetic field is used
to split the frequency of the vortex core gyrotropic rotation into two distinct
frequencies, depending on the sign of the vortex core polarity inside
the dot. A magnetic resonance force microscope and microwave pulses applied at
one of these two resonant frequencies allow for local and deterministic
addressing of binary information (core polarity)
Possible Detection of OVI from the LMC Superbubble N70
We present FUSE observations toward four stars in the LMC superbubble N70 and
compare these spectra to those of four comparison targets located in nearby
field and diffuse regions. The N70 sight lines show OVI 1032 absorption that is
consistently stronger than the comparison sight lines by ~60%. We attribute the
excess column density (logN_OVI=14.03 cm^-2) to hot gas within N70, potentially
the first detection of OVI associated with a superbubble. In a survey of 12 LMC
sight lines, Howk et al. (2002a) concluded that there was no correlation
between ISM morphology and N_OVI. We present a reanalysis of their measurements
combined with our own and find a clear difference between the superbubble and
field samples. The five superbubbles probed to date with FUSE show a
consistently higher mean N_OVI than the 12 non-superbubble sight lines, though
both samples show equivalent scatter from halo variability. Possible ionization
mechanisms for N70 are discussed, and we conclude that the observed OVI could
be the product of thermal conduction at the interface between the hot, X-ray
emitting gas inside the superbubble and the cooler, photoionized material
making up the shell seen prominently in Halpha. We calculate the total hydrogen
density n_H implied by our OVI measurements and find a value consistent with
expectations. Finally, we discuss emission-line observations of OVI from N70.Comment: 9 pages in emulateapj style. Accepted to Ap
Dust in the Local Interstellar Wind
The gas-to-dust mass ratios found for interstellar dust within the Solar
System, versus values determined astronomically for the cloud around the Solar
System, suggest that large and small interstellar grains have separate
histories, and that large interstellar grains preferentially detected by
spacecraft are not formed exclusively by mass exchange with nearby interstellar
gas. Observations by the Ulysses and Galileo satellites of the mass spectrum
and flux rate of interstellar dust within the heliosphere are combined with
information about the density, composition, and relative flow speed and
direction of interstellar gas in the cloud surrounding the solar system to
derive an in situ value for the gas-to-dust mass ratio, . Hubble observations of the cloud surrounding the solar system
yield a gas-to-dust mass ratio of Rg/d=551+61-251 when B-star reference
abundances are assumed. The exclusion of small dust grains from the heliosheath
and heliosphere regions are modeled, increasing the discrepancy between
interstellar and in situ observations. The shock destruction of interstellar
grains is considered, and comparisons are made with interplanetary and presolar
dust grains.Comment: 87 pages, 9 figures, 6 tables, accepted for publication in
Astrophysical Journal. Uses AASTe
Myocardial delayed enhancement using parallel imaging with an overlapping partial-Fourier acquisition and variable k-space segmentation
- …
