4,986 research outputs found

    Risk stratification for treatment or prophylaxis of invasive fungal infections

    Get PDF

    Turbulent mixing layers in the interstellar medium of galaxies

    Get PDF
    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6

    Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Get PDF
    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS

    Dual-functional materials via CCTP and selective orthogonal thiol-Michael addition/epoxide ring opening reactions

    Get PDF
    Poly(glycidyl methacrylate) (PGMA) has been synthesised by cobalt catalysed chain transfer polymerisation (CCTP) yielding, in one step, polymers with two points for post polymerisation functionalisation; the activated terminal vinyl bond and in chain epoxide groups. Epoxide ring-opening and a combination of thiol-Michael addition and epoxide ring-opening has been used for the post-functionalisation with amines and thiols to prepare a range of functional materials

    Asymmetries in Mars' Exosphere: Implications for X-ray and ENA Imaging

    Full text link
    Observations and simulations show that Mars' atmosphere has large seasonal variations. Total atmospheric density can have an order of magnitude latitudinal variation at exobase heights. By numerical simulations we show that these latitude variations in exobase parameters induce asymmetries in the hydrogen exosphere that propagate to large distances from the planet. We show that these asymmetries in the exosphere produce asymmetries in the fluxes of energetic neutral atoms (ENAs) and soft X-rays produced by charge exchange between the solar wind and exospheric hydrogen. This could be an explanation for asymmetries that have been observed in ENA and X-ray fluxes at Mars.Comment: Submitted to Space Science Review. v2: Minor changes in text and figure

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator

    Full text link
    It is shown that the generation linewidth of an auto-oscillator with a nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends on the oscillation amplitude) is substantially larger than the linewidth of a conventional quasi-linear auto-oscillator due to the renormalization of the phase noise caused by the nonlinearity of the oscillation frequency. The developed theory, when applied to a spin-torque nano-contact auto-oscillator, predicts a minimum of the generation linewidth when the nano-contact is magnetized at a critical angle to its plane, corresponding to the minimum nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure
    corecore