22 research outputs found

    DNA Methylation

    Get PDF
    <p><b>A</b>. X Chromosome DNA Methylation and XIST Expression. Methylation levels of genes in the X-chromosome (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0118307#pone.0118307.s009" target="_blank">S6A Table</a>) are shown on the heatmap. Hierarchical clustering was performed on the samples, as indicated by the dendrogram. The genes are ordered according to their location (from the beginning to the end of the chromosome). Samples that show loss of DNA methylation for the “Enz” cluster are highlighted in blue, those that show DNA methylation for the “Ecm” cluster are highlighted in pink, and for both clusters in mauve. Genes located in the regions of loss of DNA methylation are listed to the right of the heatmap. XIST expression is shown on the line graph, with the detection limit for the microarray indicated by the red line. <b>B</b>. DNA methylation at imprinted loci. Methylation levels for imprinted probes (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0118307#pone.0118307.s009" target="_blank">S6B Table</a>) are shown on the heatmap. Hierarchical clustering was performed on the samples, as indicated by the dendrogram. The genes are ordered according to chromosome location; genes are listed to the left. The inset at the right shows a detail of the NESP/GNAS complex locus, indicating the positions of the CpG sites that were hypermethylated (red triangle) vs. hypomethylated (green triangle) in the late passage samples relative to the NESP/GNAS and NESPAS exons. <b>C, D, E</b>. Heatmaps showing differential DNA methylation genes for early vs. late passage <b>(C)</b>, mechanical vs. enzymatic passage <b>(D)</b>, and Mef vs. Ecm substrate <b>(E)</b>. In heatmap <b>(C)</b>, the black boxes indicate genes for which the DNA methylation levels in the late passage MefMech (P103) samples was more similar to those in the early passage samples. Probes were selected by multivariate regression. Functional enrichments identified by GREAT analysis are shown to the right of the heatmaps, visualized using REVIGO [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0118307#pone.0118307.ref013" target="_blank">13</a>]. Samples were arranged according to passage and culture method, and hierarchical clustering was performed on the genes only. In the functional enrichment results, the size of the node indicated the number of contributing GO terms, and color of the nodes indicates the FDR (darker color for lower FDR), and the edge length indicates the similarity between GO terms (shorter edge for more similar terms).</p

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Antigenic variation in Giardia lamblia is regulated by RNA interference

    No full text
    Giardia lamblia (also called Giardia intestinalis) is one of the most common intestinal parasites of humans. To evade the host's immune response, Giardia undergoes antigenic variation - a process that allows the parasite to develop chronic and recurrent infections. From a repertoire of ∼190 variant-specific surface protein (VSP)-coding genes, Giardia expresses only one VSP on the surface of each parasite at a particular time, but spontaneously switches to a different VSP by unknown mechanisms. Here we show that regulation of VSP expression involves a system comprising RNA-dependent RNA polymerase, Dicer and Argonaute, known components of the RNA interference machinery. Clones expressing a single surface antigen efficiently transcribe several VSP genes but only accumulate transcripts encoding the VSP to be expressed. Detection of antisense RNAs corresponding to the silenced VSP genes and small RNAs from the silenced but not for the expressed vsp implicate the RNA interference pathway in antigenic variation. Remarkably, silencing of Dicer and RNA-dependent RNA polymerase leads to a change from single to multiple VSP expression in individual parasites.Fil: Prucca, César G. Universidad Católica de Córdoba. Facultad de Ciencias de la Salud; ArgentinaFil: Slavin, Ileana. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Quiroga, Rodrigo. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Elías, Eliana Vanina. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Rivero, Fernando David. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Saura, Alicia. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Carranza, Pedro Gabriel. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Luján, Hugo Daniel. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentin

    Human iPSC-Derived 2D and 3D Platforms for Rapidly Assessing Developmental, Functional, and Terminal Toxicities in Neural Cells

    No full text
    With increasing global health threats has come an urgent need to rapidly develop and deploy safe and effective therapies. A common practice to fast track clinical adoption of compounds for new indications is to repurpose already approved therapeutics; however, many compounds considered safe to a specific application or population may elicit undesirable side effects when the dosage, usage directives, and/or clinical context are changed. For example, progenitor and developing cells may have different susceptibilities than mature dormant cells, which may yet be different than mature active cells. Thus, in vitro test systems should reflect the cellular context of the native cell: developing, nascent, or functionally active. To that end, we have developed high-throughput, two- and three-dimensional human induced pluripotent stem cell (hiPSC)-derived neural screening platforms that reflect different neurodevelopmental stages. As a proof of concept, we implemented this in vitro human system to swiftly identify the potential neurotoxicity profiles of 29 therapeutic compounds that could be repurposed as anti-virals. Interestingly, many compounds displayed high toxicity on early-stage neural tissues but not on later stages. Compounds with the safest overall viability profiles were further evaluated for functional assessment in a high-throughput calcium flux assay. Of the 29 drugs tested, only four did not modulate or have other potentially toxic effects on the developing or mature neurospheroids across all the tested dosages. These results highlight the importance of employing human neural cultures at different stages of development to fully understand the neurotoxicity profile of potential therapeutics across normal ontogeny

    The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia

    Get PDF
    Giardia is an intestinal parasite that belongs to the earliest diverging branch of the eukaryotic lineage of descent. Giardia undergoes adaptation for survival outside the host's intestine by differentiating into infective cysts. Encystation involves the synthesis and transport of cyst wall constituents to the plasma membrane for release and extracellular organization. Nevertheless, little is known about the molecular events related to cyst wall biogenesis in Giardia. Among the components of the cyst wall there are two proteins that we have previously identified and characterized: CWP1 (26 kDa) and CWP2 (39 kDa). Expression of these proteins is coordinately induced, and both concentrated within encystation-specific secretory vesicles before their extracellular polymerization. Although highly similar to each other at the amino terminus, CWP2 includes a COOH-terminal 121-amino acid extension. Here, we show that this extension, rich in basic residues, is cleaved from CWP2 before cyst wall formation by an intracellular cysteine proteinase activity, which is induced during encystation like CWPs. Specific inhibitors prevent release of cyst wall materials, abolishing cyst wall formation. We also report the purification, cloning, and characterization of the encystation-specific cysteine proteinase responsible for the proteolytic processing of CWP2, which is homologue to lysosomal cathepsin C. Encystation-specific cysteine proteinase ESCP possesses unique characteristics compared with cathepsins from higher eukaryotes, such as a transmembrane domain and a short cytoplasmic tail. These features make this enzyme the most divergent cathepsin C identified to date and provide new insights regarding cyst wall formation in Giardia.Fil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Nores, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Slavin, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Carmona, Carlos. Universidad de la República. Facultad de Ciencias; UruguayFil: Conrad, John T.. National Institutes of Health; Estados UnidosFil: Mowatt, Michael R.. National Institutes of Health; Estados UnidosFil: Nash, Theodore E.. National Institutes of Health; Estados UnidosFil: Coronel, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; ArgentinaFil: Luján, Hugo D.. Universidad Nacional de Córdoba. Facultad de Medicina. Cátedra de Bioquímica y Biología Molecular; Argentin

    Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture

    Get PDF
    Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum–Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detected in some secretory tissues. We report that, in HeLa cells, an increase in Rab1b levels induces changes in Golgi size and gene expression. Significantly, analyses applied to selected genes, KDELR3, GM130 (involved in membrane transport), and the proto-oncogene JUN, indicate that the Rab1b increase acts as a molecular switch to control the expression of these genes at the transcriptional level, resulting in changes at the protein level. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element-binding protein consensus binding site in those target promoter regions. Moreover, our results reveal that, in a secretory thyroid cell line (FRTL5), Rab1b expression increases in response to thyroid-stimulating hormone (TSH). Additionally, changes in Rab1b expression in FRTL5 cells modify the specific TSH response. Our results show, for the first time, that changes in Rab1b levels modulate gene transcription and strongly suggest that a Rab1b increase is required to elicit a secretory response.Fil: Romero, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Dumur, Catherine I.. Virginia Commonwealth University; Estados UnidosFil: Martinez Beladelli, Hernán Estaban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: García, Iris Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Monetta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Slavin, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Sampieri, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Koritschoner, Nicolas Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Mironov, Alexander. FIRC Institute of Molecular Oncology; ItaliaFil: de Matteis, Maria Antonieta. Telethon Institute of Genetics and Medicine; ItaliaFil: Alvarez, Cecilia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
    corecore