612 research outputs found

    Rolling resistance of electric vehicle tires from track tests

    Get PDF
    Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively

    Performance of conventionally powered vehicles tested to an electric vehicle test procedure

    Get PDF
    A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented

    S-adenosyl-l-methionine: (S) -7,8,13, 14-tetrahydroberberine--n-methyltransferase, a branch point enzyme in the biosynthesis of benzophenanthridine and protopine alkaloids.

    Get PDF
    The enzyme which transfers the CH3-group of S-adenosylmethionine to the nitrogen atom of (S)-tetrahydroberberine and (S)-stylopine is found to occur in a number of plant cell cultures originating from species containing alkaloids; it is located at an important branch point in isoquinoline alkaloid biosynthesis

    Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective

    Get PDF
    The Global Stratotype Section and Point (GSSP) of the Silurian/Devonian boundary, Lower Devonian Series and Lochkovian Stage was formally placed in 1977 at Klonk, in the Czech Republic, at the first appearance of the graptolite Uncinatograptus uniformis uniformis (Přibyl). However, since then, correlation of this limit has been often hampered in carbonate facies where graptolites are uncommon or totally absent. A large calcareous deposition occurred at the Silurian/Devonian boundary along the northern and peri-Gondwana margin, thus representing an ideal location to select and test a possible additional biostratigraphic marker of the limit among conodonts. The first appearance of Caudicriodus hesperius almost simultaneously at the base of the Devonian in Bohemia, the Carnic Alps, Sardinia, Morocco and elsewhere indicates that this taxon is the conodont that best approximates the beginning of the Period. The first or last appearance of other species (e.g., Ozarkodina confluens, Zieglerodina klonkensis, Z. remscheidensis and Caudicriodus woschmidti) may help to recognise the boundary as well

    Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Get PDF
    BACKGROUND: Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. RESULTS: Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. CONCLUSION: These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis

    Increase in Tau Pathology in P290S Mapt Knock-In Mice Crossed with AppNL-G-F Mice

    Get PDF
    Alzheimer's Disease (AD) is characterized by the pathological assembly of Aβ peptide, which deposits into extracellular plaques, and tau, which accumulates in intraneuronal inclusions. To investigate the link between Aβ and tau pathologies, experimental models featuring both pathologies are needed. We developed a mouse model featuring both tau and Aβ pathologies by knocking the P290S mutation into murine Mapt and crossing these MaptP290S KI mice with the AppNL-G-F KI line. MaptP290S KI mice developed a small number of tau inclusions, which increased with age. The amount of tau pathology was significantly larger in AppNL-G-FxMaptP290S KI mice from 18-months of age onwards. Tau pathology was higher in limbic areas, including hippocampus, amygdala and piriform/entorhinal cortex. We also observed AT100-and Gallyas-Braak-silver-positive dystrophic neurites containing assembled filamentous tau, as visualized by in situ EM. Using a cell-based tau seeding assay, we showed that sarkosyl-insoluble brain extracts from both 18-month-old MaptP290S KI and AppNL-G-FxMaptP290S KI mice were seed-competent, with brain extracts from double KI mice seeding significantly more than those from the MaptP290S KI mice. Finally, we showed that AppNL-G-FxMaptP290S KI mice had neurodegeneration in the piriform cortex from 18-months of age. We suggest that AppNL-G-F x MaptP290S KI mice provide a good model for studying the interactions of aggregation-prone tau, Aβ, neuritic plaques, neurodegeneration and aging

    Optimization of cascaded regenerative links based on phase sensitive amplifiers

    Get PDF
    We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system
    • …
    corecore